{"title":"Effects of Platycodon grandiflorum seeds exposure to static magnetic field on germination and early seedling growth","authors":"Xingxing Yang PhD, Xin Wang, Xuhan Zhang, Jinlan Hu, Jing Wang, Yansong Chen PhD, Yong Zhu PhD","doi":"10.1002/bem.22530","DOIUrl":null,"url":null,"abstract":"<p>Effects of non-uniform upward (north) and downward (south) 300 mT static magnetic field (SMF) 14 days (24 h/day) treatment of Platycodon grandiflorum seeds on germination, seedling growth, enzyme activities, malondialdehyde (MDA) level and seedling chlorophyll content were investigated under laboratory conditions. Germination rate, index and potential from magnetically exposed Anhui and Hebei Platycodon grandiflorum seeds were significantly not affected (<i>p</i> > 0.05), however, the values of these germination variables were notably higher in Anhui Platycodon grandiflorum seeds than Hebei seeds. Treatment of Hebei Platycodon grandiflorum seeds with 300 mT SMFs increased (<i>p</i> < 0.05) the catalase (CAT), superoxide dismutase (SOD), α-and β-amylase activities and chlorophyll content significantly, the root length and MDA level of Anhui seeds were reduced, while the MDA level was had no obviously affect. The results suggest that non-uniform upward 300 mT SMF had potential to active the antioxidant enzymes (catalase and superoxide dismutase) and hydrolytic enzymes (α-and β-amylase activities) and increase the chlorophyll content of <i>Platycodon grandiflorus</i> seeds under laboratory conditions.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22530","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Effects of Platycodon grandiflorum seeds exposure to static magnetic field on germination and early seedling growth
Effects of non-uniform upward (north) and downward (south) 300 mT static magnetic field (SMF) 14 days (24 h/day) treatment of Platycodon grandiflorum seeds on germination, seedling growth, enzyme activities, malondialdehyde (MDA) level and seedling chlorophyll content were investigated under laboratory conditions. Germination rate, index and potential from magnetically exposed Anhui and Hebei Platycodon grandiflorum seeds were significantly not affected (p > 0.05), however, the values of these germination variables were notably higher in Anhui Platycodon grandiflorum seeds than Hebei seeds. Treatment of Hebei Platycodon grandiflorum seeds with 300 mT SMFs increased (p < 0.05) the catalase (CAT), superoxide dismutase (SOD), α-and β-amylase activities and chlorophyll content significantly, the root length and MDA level of Anhui seeds were reduced, while the MDA level was had no obviously affect. The results suggest that non-uniform upward 300 mT SMF had potential to active the antioxidant enzymes (catalase and superoxide dismutase) and hydrolytic enzymes (α-and β-amylase activities) and increase the chlorophyll content of Platycodon grandiflorus seeds under laboratory conditions.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.