Emma Sylvester, Chao Deng, Robert McIntosh, Steve Iskra, John Frankland, Raymond McKenzie, Rodney J Croft
{"title":"自由移动的 C57BL/6 小鼠对 1.95 GHz 全身射频电磁场的核心体温反应特征。","authors":"Emma Sylvester, Chao Deng, Robert McIntosh, Steve Iskra, John Frankland, Raymond McKenzie, Rodney J Croft","doi":"10.1002/bem.22527","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigated the core body temperature (CBT) response of free-moving adult male and female C57BL/6 mice, during and following a 2-h exposure to 1.95 GHz RF-EMF within custom-built reverberation chambers, using temperature capsules implanted within the intraperitoneal cavity and data continuously logged and transmitted via radiotelemetry postexposure. Comparing RF-EMF exposures (WBA-SAR of 1.25, 2.5, 3.75, and 5 W/kg) to the sham-exposed condition, we identified a peak in CBT within the first 16 min of RF-EMF exposure (+0.15, +0.31, +0.24, +0.37°C at 1.25, 2.5, 3.75, and 5 W/kg respectively; statistically significant at WBA-SAR ≥ 2.5 W/kg only), which largely dissipated for the remainder of the exposure period. Immediately before the end of exposure, only the CBT of the 5 W/kg condition was statistically differentiable from sham. Based on our findings, it is apparent that mice are able to effectively compensate for the increased thermal load at RF-EMF strengths up to 5 W/kg. In addition, the elevated CBT at the end of the exposure period in the 5 W/kg condition was statistically significantly reduced compared to the sham condition immediately after RF-EMF exposure ceased. This would indicate that measures of CBT following the end of an RF-EMF exposure period may not reflect the actual change in the CBT of mice caused by RF-EMF exposure in mice.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterising core body temperature response of free-moving C57BL/6 mice to 1.95 GHz whole-body radiofrequency-electromagnetic fields.\",\"authors\":\"Emma Sylvester, Chao Deng, Robert McIntosh, Steve Iskra, John Frankland, Raymond McKenzie, Rodney J Croft\",\"doi\":\"10.1002/bem.22527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study investigated the core body temperature (CBT) response of free-moving adult male and female C57BL/6 mice, during and following a 2-h exposure to 1.95 GHz RF-EMF within custom-built reverberation chambers, using temperature capsules implanted within the intraperitoneal cavity and data continuously logged and transmitted via radiotelemetry postexposure. Comparing RF-EMF exposures (WBA-SAR of 1.25, 2.5, 3.75, and 5 W/kg) to the sham-exposed condition, we identified a peak in CBT within the first 16 min of RF-EMF exposure (+0.15, +0.31, +0.24, +0.37°C at 1.25, 2.5, 3.75, and 5 W/kg respectively; statistically significant at WBA-SAR ≥ 2.5 W/kg only), which largely dissipated for the remainder of the exposure period. Immediately before the end of exposure, only the CBT of the 5 W/kg condition was statistically differentiable from sham. Based on our findings, it is apparent that mice are able to effectively compensate for the increased thermal load at RF-EMF strengths up to 5 W/kg. In addition, the elevated CBT at the end of the exposure period in the 5 W/kg condition was statistically significantly reduced compared to the sham condition immediately after RF-EMF exposure ceased. This would indicate that measures of CBT following the end of an RF-EMF exposure period may not reflect the actual change in the CBT of mice caused by RF-EMF exposure in mice.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/bem.22527\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bem.22527","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Characterising core body temperature response of free-moving C57BL/6 mice to 1.95 GHz whole-body radiofrequency-electromagnetic fields.
The present study investigated the core body temperature (CBT) response of free-moving adult male and female C57BL/6 mice, during and following a 2-h exposure to 1.95 GHz RF-EMF within custom-built reverberation chambers, using temperature capsules implanted within the intraperitoneal cavity and data continuously logged and transmitted via radiotelemetry postexposure. Comparing RF-EMF exposures (WBA-SAR of 1.25, 2.5, 3.75, and 5 W/kg) to the sham-exposed condition, we identified a peak in CBT within the first 16 min of RF-EMF exposure (+0.15, +0.31, +0.24, +0.37°C at 1.25, 2.5, 3.75, and 5 W/kg respectively; statistically significant at WBA-SAR ≥ 2.5 W/kg only), which largely dissipated for the remainder of the exposure period. Immediately before the end of exposure, only the CBT of the 5 W/kg condition was statistically differentiable from sham. Based on our findings, it is apparent that mice are able to effectively compensate for the increased thermal load at RF-EMF strengths up to 5 W/kg. In addition, the elevated CBT at the end of the exposure period in the 5 W/kg condition was statistically significantly reduced compared to the sham condition immediately after RF-EMF exposure ceased. This would indicate that measures of CBT following the end of an RF-EMF exposure period may not reflect the actual change in the CBT of mice caused by RF-EMF exposure in mice.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.