{"title":"Multivector Contractions Revisited, Part II","authors":"André L. G. Mandolesi","doi":"10.1007/s00006-024-01358-3","DOIUrl":"10.1007/s00006-024-01358-3","url":null,"abstract":"<div><p>The theory of contractions of multivectors, and star duality, was reorganized in a previous article, and here we present some applications. First, we study inner and outer spaces associated to a general multivector <i>M</i> via the equations <span>(v wedge M = 0)</span> and <span>(v mathbin {lrcorner }M=0)</span>. They are then used to analyze special decompositions, factorizations and ‘carvings’ of <i>M</i>, to define generalized grades, and to obtain new simplicity criteria, including a reduced set of Plücker-like relations. We also discuss how contractions are related to supersymmetry, and give formulas for supercommutators of multi-fermion creation and annihilation operators.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scaled Global Operators and Fueter Variables on Non-zero Scaled Hypercomplex Numbers","authors":"Daniel Alpay, Ilwoo Cho, Mihaela Vajiac","doi":"10.1007/s00006-024-01347-6","DOIUrl":"10.1007/s00006-024-01347-6","url":null,"abstract":"<div><p>In this paper we describe the rise of global operators in the scaled quaternionic case, an important extension from the quaternionic case to the family of scaled hypercomplex numbers <span>(mathbb {H}_t,, tin mathbb {R}^*)</span>, of which the <span>(mathbb {H}_{-1}=mathbb {H})</span> is the space of quaternions and <span>(mathbb {H}_{1})</span> is the space of split quaternions. We also describe the scaled Fueter-type variables associated to these operators, developing a coherent theory in this field. We use these types of variables to build different types of function spaces on <span>(mathbb {H}_t)</span>. Counterparts of the Hardy space and of the Arveson space are also introduced and studied in the present setting. The two different adjoints in the scaled hypercomplex numbers lead to two parallel cases in each instance. Finally we introduce and study the notion of rational function.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-024-01347-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Radon–Penrose Transformation for Quaternionic k-Regular Functions on Right-Type Groups","authors":"Qianqian Kang, Guangzhen Ren, Yun Shi","doi":"10.1007/s00006-024-01360-9","DOIUrl":"10.1007/s00006-024-01360-9","url":null,"abstract":"<div><p>The right-type groups are nilpotent Lie groups of step two having a pair of anticommutative operators, and many aspects of quaternionic analysis can be generalized to this kind of groups. In this paper, we use the twistor transformation to study the tangential <i>k</i>-Cauchy–Fueter equations and quaternionic <i>k</i>-regular functions on these groups. We introduce the twistor space over the <span>((4n+r))</span>-dimensional complex right-type groups and use twistor transformation to construct an explicit Radon–Penrose type integral formula to solve the holomorphic tangential <i>k</i>-Cauchy–Fueter equation on these groups. When restricted to the real right-type group, this formula provides solutions to tangential <i>k</i>-Cauchy–Fueter equations. In particular, it gives us many <i>k</i>-regular polynomials.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Classical System of Matrix Equations Over the Split Quaternion Algebra","authors":"Kai-Wen Si, Qing-Wen Wang, Lv-Ming Xie","doi":"10.1007/s00006-024-01348-5","DOIUrl":"10.1007/s00006-024-01348-5","url":null,"abstract":"<div><p>We design several real representations of split quaternion matrices with the primary objective of establishing both necessary and sufficient conditions for the existence of solutions within a system of split quaternion matrix equations. This includes conditions for the general solution without any constraints, as well as <span>(X=pm X^{eta })</span> solutions and <span>(eta )</span>-(anti-)Hermitian solutions. Furthermore, we derive the expressions for the general solutions when it is solvable. As an application, we investigate the solutions to a system of five split quaternion matrix equations involving <span>(X^star )</span>. Finally, we present several algorithms and numerical examples to demonstrate the results of this paper.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Note on Centralizers and Twisted Centralizers in Clifford Algebras","authors":"Ekaterina Filimoshina, Dmitry Shirokov","doi":"10.1007/s00006-024-01345-8","DOIUrl":"10.1007/s00006-024-01345-8","url":null,"abstract":"<div><p>This paper investigates centralizers and twisted centralizers in degenerate and non-degenerate Clifford (geometric) algebras. We provide an explicit form of the centralizers and twisted centralizers of the subspaces of fixed grades, subspaces determined by the grade involution and the reversion, and their direct sums. The results can be useful for applications of Clifford algebras in computer science, physics, and engineering.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine Learning Discovers Invariants of Braids and Flat Braids","authors":"Alexei Lisitsa, Mateo Salles, Alexei Vernitski","doi":"10.1007/s00006-024-01349-4","DOIUrl":"10.1007/s00006-024-01349-4","url":null,"abstract":"<div><p>We use machine learning to classify examples of braids (or flat braids) as trivial or non-trivial. Our machine learning takes the form of supervised learning, specifically multilayer perceptron neural networks. When they achieve good results in classification, we are able to interpret their structure as mathematical conjectures and then prove these conjectures as theorems. As a result, we find new invariants of braids and prove several theorems related to them. This work evolves from our experiments exploring how different types of AI cope with untangling braids with 3 strands, this is why we concentrate mostly on braids with 3 strands.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-024-01349-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances for Meson Algebras and their Lipschitz Monoids","authors":"Jacques Helmstetter","doi":"10.1007/s00006-024-01354-7","DOIUrl":"10.1007/s00006-024-01354-7","url":null,"abstract":"<div><p>This article has two purposes. After a short reminder of classical properties of meson algebras (also called Duffin-Kemmer algebras), Sects. 4 to 7 present recent advances in the study of their algebraic structure. Then Sects. 8 to 11 explain that each meson algebra contains a Lipschitz monoid with properties quite similar to those of Lipschitz monoids in Clifford algebras.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-024-01354-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Octonionic Submodules Generated by One Element","authors":"Qinghai Huo, Guangbin Ren","doi":"10.1007/s00006-024-01355-6","DOIUrl":"10.1007/s00006-024-01355-6","url":null,"abstract":"<div><p>The aim of this article is to characterize the octonionic submodules generated by one element, which is very complicated compared with other normed division algebras. To this end, we introduce a novel identity that elucidates the relationship between the commutator and associator within an octonionic bimodule. Remarkably, the commutator can be expressed in terms of the linear combination of associators. This phenomenon starkly contrasts with the quaternionic case, which leads to a unique right octonionic scalar multiplication compatible with the original left octonionic module structure in the sense of forming an octonionic bimodule. With the help of this identity, we get a new expression of the real part and imaginary part of an element in an octonionic bimodule. Ultimately, we obtain that the submodule generated by one element <i>x</i> is <span>({mathbb {O}}^5x)</span> instead of <span>({mathbb {O}}x)</span>.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Bessel–Clifford Function Associated to the Cayley–Laplace Operator","authors":"David Eelbode","doi":"10.1007/s00006-024-01351-w","DOIUrl":"10.1007/s00006-024-01351-w","url":null,"abstract":"<div><p>In this paper the Cayley–Laplace operator <span>(Delta _{xu})</span> is considered, a rotationally invariant differential operator which can be seen as a generalisation of the classical Laplace operator for functions depending on wedge variables <span>(X_{ab})</span> (the minors of a matrix variable). We will show that the Bessel–Clifford function appears naturally in the framework of two-wedge variables, and explain how this function somehow plays the role of the exponential function in the framework of Grassmannians. This will be used to obtain a generalisation of the series expansion for the Newtonian potential, and to investigate a new kind of binomial polynomials related to Nayarana numbers.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parametrizing Clifford Algebras’ Matrix Generators with Euler Angles","authors":"Manuel Beato Vásquez, Melvin Arias Polanco","doi":"10.1007/s00006-024-01353-8","DOIUrl":"10.1007/s00006-024-01353-8","url":null,"abstract":"<div><p>A parametrization, given by the Euler angles, of Hermitian matrix generators of even and odd non-degenerate Clifford algebras is constructed by means of the Kronecker product of a parametrized version of Pauli matrices and by the identification of all possible anticommutation sets. The internal parametrization of the matrix generators allows a straightforward interpretation in terms of rotations, and in the absence of a similarity transformation can be reduced to the canonical representations by an appropriate choice of parameters. The parametric matrix generators of second and fourth-order are linearly decomposed in terms of Pauli, Dirac, and fourth-order Gell–Mann matrices establishing a direct correspondence between the different representations and matrix algebra bases. In addition, and with the expectation for further applications in group theory, a linear decomposition of GL(4) matrices on the basis of the parametric fourth-order matrix generators and in terms of four-vector parameters is explored. By establishing unitary conditions, a parametrization of two subgroups of SU(4) is achieved.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}