{"title":"一些\\(\\mathbb {H}\\) -Banach模块和光纤束","authors":"José Oscar González-Cervantes","doi":"10.1007/s00006-025-01384-9","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a coordinate sphere bundle defined from theory of slice regular functions whose bundle projection and some real Banach spaces induce coordinate sphere bundles in which the quaternionic Banach modules of the slice regular functions of Bloch, Besov and Dirichlet are the base spaces. Finally, this work shows that Möbius invariant property of these quaternionic Banach modules defines pullback bundles or automorphisms on sphere bundles.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some \\\\(\\\\mathbb {H}\\\\)-Banach Modules and Fiber Bundles\",\"authors\":\"José Oscar González-Cervantes\",\"doi\":\"10.1007/s00006-025-01384-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents a coordinate sphere bundle defined from theory of slice regular functions whose bundle projection and some real Banach spaces induce coordinate sphere bundles in which the quaternionic Banach modules of the slice regular functions of Bloch, Besov and Dirichlet are the base spaces. Finally, this work shows that Möbius invariant property of these quaternionic Banach modules defines pullback bundles or automorphisms on sphere bundles.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01384-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01384-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Some \(\mathbb {H}\)-Banach Modules and Fiber Bundles
This work presents a coordinate sphere bundle defined from theory of slice regular functions whose bundle projection and some real Banach spaces induce coordinate sphere bundles in which the quaternionic Banach modules of the slice regular functions of Bloch, Besov and Dirichlet are the base spaces. Finally, this work shows that Möbius invariant property of these quaternionic Banach modules defines pullback bundles or automorphisms on sphere bundles.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.