Advances in Applied Clifford Algebras最新文献

筛选
英文 中文
Slice Regular Holomorphic Cliffordian Functions of Order k
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-04-25 DOI: 10.1007/s00006-025-01376-9
Giulio Binosi
{"title":"Slice Regular Holomorphic Cliffordian Functions of Order k","authors":"Giulio Binosi","doi":"10.1007/s00006-025-01376-9","DOIUrl":"10.1007/s00006-025-01376-9","url":null,"abstract":"<div><p>Holomorphic Cliffordian functions of order <i>k</i> are functions in the kernel of the differential operator <span>(overline{partial }Delta ^k)</span>. When <span>(overline{partial }Delta ^k)</span> is applied to functions defined in the paravector space of some Clifford Algebra <span>(mathbb {R}_m)</span> with an odd number of imaginary units, the Fueter–Sce construction establishes a critical index <span>(k=frac{m-1}{2})</span> (sometimes called Sce exponent) for which the class of slice regular functions is contained in the one of holomorphic Cliffordian functions of order <span>(frac{m-1}{2})</span>. In this paper, we analyze the case <span>(k&lt;frac{m-1}{2})</span> and find that the polynomials of degree at most 2<i>k</i> are the only slice regular holomorphic Cliffordian functions of order <i>k</i>.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-025-01376-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive Preservers of Invertibility or Zero Divisors in Quaternionic Setting
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-04-22 DOI: 10.1007/s00006-025-01383-w
El Miloud Ouahabi, Khalid Souilah
{"title":"Additive Preservers of Invertibility or Zero Divisors in Quaternionic Setting","authors":"El Miloud Ouahabi,&nbsp;Khalid Souilah","doi":"10.1007/s00006-025-01383-w","DOIUrl":"10.1007/s00006-025-01383-w","url":null,"abstract":"<div><p>This paper completely describes the form of all unital additive surjective maps, on the algebra of all bounded right linear operators acting on a two-sided quaternionic Banach space, that preserve any one of (left, right) invertibility, (left, right) zero divisors and (left, right) topological divisors of zero in both directions.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Monogenic Functions and the Dirac Complex of Two Vector Variables
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-04-12 DOI: 10.1007/s00006-025-01378-7
Yun Shi, Wei Wang, Qingyan Wu
{"title":"On Monogenic Functions and the Dirac Complex of Two Vector Variables","authors":"Yun Shi,&nbsp;Wei Wang,&nbsp;Qingyan Wu","doi":"10.1007/s00006-025-01378-7","DOIUrl":"10.1007/s00006-025-01378-7","url":null,"abstract":"<div><p>A monogenic function of two vector variables is a function annihilated by two Dirac operators. We give the explicit form of differential operators in the Dirac complex resolving two Dirac operators and prove its ellipticity directly. This opens the door to apply the method of several complex variables to investigate this kind of monogenic functions. We prove the Poincaré lemma for this complex, i.e. the non-homogeneous equations are solvable under the compatibility condition, by solving the associated Hodge Laplacian equations of fourth order. As corollaries, we establish the Bochner–Martinelli integral representation formula for two Dirac operators and the Hartogs’ extension phenomenon for monogenic functions. We also apply abstract duality theorem to the Dirac complex to obtain the generalization of Malgrange’s vanishing theorem and establish the Hartogs–Bochner extension phenomenon for monogenic functions under the moment condition.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143821942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty Principles Associated with the Multi-dimensional Quaternionic Offset Linear Canonical Transform
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-04-12 DOI: 10.1007/s00006-025-01379-6
Yingchun Jiang, Sihua Ling, Yan Tang
{"title":"Uncertainty Principles Associated with the Multi-dimensional Quaternionic Offset Linear Canonical Transform","authors":"Yingchun Jiang,&nbsp;Sihua Ling,&nbsp;Yan Tang","doi":"10.1007/s00006-025-01379-6","DOIUrl":"10.1007/s00006-025-01379-6","url":null,"abstract":"<div><p>The paper is concerned with the definition, properties and uncertainty principles for the multi-dimensional quaternionic offset linear canonical transform. First, we define the multi-dimensional offset linear canonical transform based on matrices with symplectic structure. Then, we focus on the definition of the multi-dimensional quaternionic offset linear canonical transform and the corresponding convolution theorem. Finally, some uncertainty principles are established for the proposed multi-dimensional (quaternionic) offset linear canonical transform.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sliding Mode Control of Switched Hamiltonian Systems: A Geometric Algebra Approach
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-04-12 DOI: 10.1007/s00006-025-01380-z
H. Sira-Ramírez, B. C. Gómez-León, M. A. Aguilar-Orduña
{"title":"Sliding Mode Control of Switched Hamiltonian Systems: A Geometric Algebra Approach","authors":"H. Sira-Ramírez,&nbsp;B. C. Gómez-León,&nbsp;M. A. Aguilar-Orduña","doi":"10.1007/s00006-025-01380-z","DOIUrl":"10.1007/s00006-025-01380-z","url":null,"abstract":"<div><p>In this article, a Geometric Algebra (GA) and Geometric Calculus (GC) based exposition is carried out dealing with the formal characterization of sliding regimes for general Single-Input-Single-Output (SISO) nonlinear switched controlled Hamiltonian systems. Necessary and sufficient conditions for the local existence of a sliding regime on a given vector manifold are presented. Feedback controller design strategies for achieving local sliding regimes on a given smooth vector manifold—defined in the phase space of the system—are also derived using the GA-GC framework. One such controller design method, which is mathematically justified, is based on the invariance property of the leaves of the foliation induced by the sliding surface coordinate function level sets. The idealized average smooth sliding motions are shown to arise from an extrinsic projection operator whose geometric properties are exploited for characterizing robustness with respect to unknown exogenous perturbation vector fields. An application example is provided from the power electronics area.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-025-01380-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Second Order Elliptic Systems of Partial Differential Equations in Clifford Analysis
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-04-08 DOI: 10.1007/s00006-025-01377-8
Daniel Alfonso Santiesteban, Ricardo Abreu Blaya, Juan Bory Reyes
{"title":"On Second Order Elliptic Systems of Partial Differential Equations in Clifford Analysis","authors":"Daniel Alfonso Santiesteban,&nbsp;Ricardo Abreu Blaya,&nbsp;Juan Bory Reyes","doi":"10.1007/s00006-025-01377-8","DOIUrl":"10.1007/s00006-025-01377-8","url":null,"abstract":"<div><p>The paper deals with two second order elliptic systems of partial differential equations in Clifford analysis. They are of the form <span>({^phi !underline{partial }}f{^psi !underline{partial }}=0)</span> and <span>(f{^phi !underline{partial }}{^psi !underline{partial }}=0)</span>, where <span>({^phi !underline{partial }})</span> stands for the Dirac operator related to a structural set <span>(phi )</span>. Their solutions, known as <span>((phi ,psi ))</span>-inframonogenic and <span>((phi ,psi ))</span>-harmonic functions, not every enjoy the nice properties and usual structure of the harmonic ones. We describe the precise relation between these two classes of functions and show their strong link to the Laplace operator. Finally, we apply a multi-dimensional Ahlfors-Beurling transform, to prove that some relative function spaces are indeed isomorphic.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quaternionic Generalized Norm Retrieval in Quaternion Euclidean Spaces
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-04-04 DOI: 10.1007/s00006-025-01381-y
Ming Yang, Yun-Zhang Li
{"title":"Quaternionic Generalized Norm Retrieval in Quaternion Euclidean Spaces","authors":"Ming Yang,&nbsp;Yun-Zhang Li","doi":"10.1007/s00006-025-01381-y","DOIUrl":"10.1007/s00006-025-01381-y","url":null,"abstract":"<div><p>Quaternion algebra <span>(mathbb {H})</span> is a noncommutative associative algebra, and recently quaternionic Fourier analysis has become the focus of an active research due to their potentials in signal analysis and color image processing. The problems related to quaternions are nontrivial and challenging due to noncommutativity of quaternion multiplication. This paper is devoted to establishing the framework of quaternionic generalized norm retrieval (QGNR) in quaternion Euclidean spaces <span>(mathbb {H}^{M})</span>. We introduce the concept of QGNR in <span>(mathbb {H}^{M})</span> that is defined for general quaternionic self-adjoint matrix sequences. Recall that, even in <span>(mathbb {C}^{M})</span> (<span>(mathbb {R}^{M})</span>)-setting, the existing literature on norm retrieval problems is only for orthogonal projection matrix sequences instead of general self-adjoint matrix sequences. We characterize QGNR-sequences in terms of their phaselift operators and induced real matrices, present an Edidin type theorem on QGNR for <span>(mathbb {H}^{M})</span>, and investigate the topological property of QGNR-sequences. Finally, we turn to constructing more QGNR-sequences. We prove that a quaternionic self-adjoint matrix sequence <span>(mathcal {F}={F_{n}}_{nin mathbb {N}_{N}})</span> is such that all <span>({TF_{n}T^{*}}_{nin mathbb {N}_{N}})</span> with quaternionic invertible matrices <i>T</i> allow QGNR for <span>(mathbb {H}^{M})</span> if and only if <span>(mathcal {F})</span> allows quaternionic generalized phase retrieval, and characterize quaternionic generalized norm retrieval multipliers that transform every QGNR-sequence into another QGNR-sequence.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143775921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Generalized Eigenvector–Eigenvalue Identity from the Viewpoint of Exterior Algebra
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-02-26 DOI: 10.1007/s00006-025-01375-w
Małgorzata Stawiska
{"title":"A Generalized Eigenvector–Eigenvalue Identity from the Viewpoint of Exterior Algebra","authors":"Małgorzata Stawiska","doi":"10.1007/s00006-025-01375-w","DOIUrl":"10.1007/s00006-025-01375-w","url":null,"abstract":"<div><p>We consider square matrices over <span>(mathbb {C})</span> satisfying an identity relating their eigenvalues and the corresponding eigenvectors re-proved and discussed by Denton, Parker, Tao and Zhang, called the eigenvector-eigenvalue identity. We prove that for an eigenvalue <span>(lambda )</span> of a given matrix, the identity holds if and only if the geometric multiplicity of <span>(lambda )</span> equals its algebraic multiplicity. We do not make any other assumptions on the matrix and allow the multiplicity of the eigenvalue to be greater than 1, which provides a substantial generalization of the identity. In the proof, we use exterior algebra, particularly the properties of higher adjugates of a matrix.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General Aspects of Jackson Calculus in Clifford Analysis
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-02-25 DOI: 10.1007/s00006-025-01374-x
Martha Lina Zimmermann, Swanhild Bernstein, Baruch Schneider
{"title":"General Aspects of Jackson Calculus in Clifford Analysis","authors":"Martha Lina Zimmermann,&nbsp;Swanhild Bernstein,&nbsp;Baruch Schneider","doi":"10.1007/s00006-025-01374-x","DOIUrl":"10.1007/s00006-025-01374-x","url":null,"abstract":"<div><p>We consider an extension of Jackson calculus into higher dimensions and specifically into Clifford analysis for the case of commuting variables. In this case, Dirac is the operator of the first <i>q</i>-partial derivatives (or <i>q</i>-differences) <span>({_{q}}mathbf {mathcal {D}}= sum _{i=1}^n e_i,{_{q}}partial _i)</span>, where <span>({_{q}}partial _i)</span> denotes the <i>q</i>-partial derivative with respect to <span>(x_i)</span>. This Dirac operator factorizes the <i>q</i>-deformed Laplace operator. Similar to the case of classical Clifford analysis, we then consider the <i>q</i>-deformed Euler and Gamma operators and their relations to each other. Nullsolutions of this <i>q</i>-Dirac equation are called <i>q</i>-monogenic. Using the Fischer decomposition, we can decompose the space of homogeneous polynomials into spaces of <i>q</i>-monogenic polynomials. Using the <i>q</i>-deformed Cauchy–Kovalevskaya extension theorem, we can construct <i>q</i>-monogenic functions. Overall, we show the analogies and the differences between classical Clifford and Jackson-Clifford analysis. In particular, <i>q</i>-monogenic functions need not be monogenic and vice versa.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-025-01374-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Branching of Weil Representation for (G_2)
IF 1.1 2区 数学
Advances in Applied Clifford Algebras Pub Date : 2025-01-29 DOI: 10.1007/s00006-025-01370-1
Zhiqiang Wang, Xingya Fan
{"title":"Branching of Weil Representation for (G_2)","authors":"Zhiqiang Wang,&nbsp;Xingya Fan","doi":"10.1007/s00006-025-01370-1","DOIUrl":"10.1007/s00006-025-01370-1","url":null,"abstract":"<div><p>This paper presents a discussion on the branching problem that arises in the Weil representation of the exceptional Lie group of type <span>(G_2)</span>. The focus is on its decomposition under the threefold cover of <span>(SL(2,, {mathbb {R}}))</span> associated with the short root of <span>(G_2)</span>.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信