{"title":"Linear Canonical Space-Time Transform and Convolution Theorems","authors":"Yi-Qiao Xu, Bing-Zhao Li","doi":"10.1007/s00006-025-01386-7","DOIUrl":null,"url":null,"abstract":"<div><p>Following the idea of the fractional space-time Fourier transform, a linear canonical space-time transform for 16-dimensional space-time <span>\\(C\\ell _{3,1}\\)</span>-valued signals is investigated in this paper. First, the definition of the proposed linear canonical space-time transform is given, and some related properties of this transform are obtained. Second, the convolution operator and the corresponding convolution theorem are proposed. Third, the convolution theorem associated with the two-sided linear canonical space-time transform is derived.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01386-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Following the idea of the fractional space-time Fourier transform, a linear canonical space-time transform for 16-dimensional space-time \(C\ell _{3,1}\)-valued signals is investigated in this paper. First, the definition of the proposed linear canonical space-time transform is given, and some related properties of this transform are obtained. Second, the convolution operator and the corresponding convolution theorem are proposed. Third, the convolution theorem associated with the two-sided linear canonical space-time transform is derived.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.