四元数集合中可逆性或零除数的加性保持子

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
El Miloud Ouahabi, Khalid Souilah
{"title":"四元数集合中可逆性或零除数的加性保持子","authors":"El Miloud Ouahabi,&nbsp;Khalid Souilah","doi":"10.1007/s00006-025-01383-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper completely describes the form of all unital additive surjective maps, on the algebra of all bounded right linear operators acting on a two-sided quaternionic Banach space, that preserve any one of (left, right) invertibility, (left, right) zero divisors and (left, right) topological divisors of zero in both directions.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Preservers of Invertibility or Zero Divisors in Quaternionic Setting\",\"authors\":\"El Miloud Ouahabi,&nbsp;Khalid Souilah\",\"doi\":\"10.1007/s00006-025-01383-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper completely describes the form of all unital additive surjective maps, on the algebra of all bounded right linear operators acting on a two-sided quaternionic Banach space, that preserve any one of (left, right) invertibility, (left, right) zero divisors and (left, right) topological divisors of zero in both directions.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01383-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01383-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文完整地描述了作用于双边四元数Banach空间的所有有界右线性算子的代数上,在两个方向上保持(左,右)可逆性、(左,右)零因子和(左,右)零拓扑因子中的任意一个的所有一元加性满射映射的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive Preservers of Invertibility or Zero Divisors in Quaternionic Setting

This paper completely describes the form of all unital additive surjective maps, on the algebra of all bounded right linear operators acting on a two-sided quaternionic Banach space, that preserve any one of (left, right) invertibility, (left, right) zero divisors and (left, right) topological divisors of zero in both directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信