Introducing Multidimensional Dirac–Hestenes Equation

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Sofia Rumyantseva, Dmitry Shirokov
{"title":"Introducing Multidimensional Dirac–Hestenes Equation","authors":"Sofia Rumyantseva,&nbsp;Dmitry Shirokov","doi":"10.1007/s00006-025-01382-x","DOIUrl":null,"url":null,"abstract":"<div><p>It is easier to investigate phenomena in particle physics geometrically by exploring a real solution to the Dirac–Hestenes equation instead of a complex solution to the Dirac equation. The current research presents a formulation of the multidimensional Dirac–Hestenes equation. Since the matrix representation of the complexified (Clifford) geometric algebra <span>\\(\\mathbb {C}\\otimes C \\hspace{-1.00006pt}\\ell _{1,n}\\)</span> depends on the parity of <i>n</i>, we examine even and odd cases separately. In the geometric algebra <span>\\(C \\hspace{-1.00006pt}\\ell _{1,3}\\)</span>, there is a lemma on a unique decomposition of an element of the minimal left ideal into the product of the idempotent and an element of the real even subalgebra. The lemma is used to construct the four-dimensional Dirac–Hestenes equation. The analogous lemma is not valid in the multidimensional case, since the dimension of the real even subalgebra of <span>\\(C \\hspace{-1.00006pt}\\ell _{1,n}\\)</span> is bigger than the dimension of the minimal left ideal for <span>\\(n&gt;4\\)</span>. Hence, we consider the auxiliary real subalgebra of <span>\\(C \\hspace{-1.00006pt}\\ell _{1,n}\\)</span> to prove a similar statement. We present the multidimensional Dirac–Hestenes equation in <span>\\(C \\hspace{-1.00006pt}\\ell _{1,n}\\)</span>. We prove that one might obtain a solution to the multidimensional Dirac–Hestenes equation using a solution to the multidimensional Dirac equation and vice versa. We also show that the multidimensional Dirac–Hestenes equation has gauge invariance.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01382-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

It is easier to investigate phenomena in particle physics geometrically by exploring a real solution to the Dirac–Hestenes equation instead of a complex solution to the Dirac equation. The current research presents a formulation of the multidimensional Dirac–Hestenes equation. Since the matrix representation of the complexified (Clifford) geometric algebra \(\mathbb {C}\otimes C \hspace{-1.00006pt}\ell _{1,n}\) depends on the parity of n, we examine even and odd cases separately. In the geometric algebra \(C \hspace{-1.00006pt}\ell _{1,3}\), there is a lemma on a unique decomposition of an element of the minimal left ideal into the product of the idempotent and an element of the real even subalgebra. The lemma is used to construct the four-dimensional Dirac–Hestenes equation. The analogous lemma is not valid in the multidimensional case, since the dimension of the real even subalgebra of \(C \hspace{-1.00006pt}\ell _{1,n}\) is bigger than the dimension of the minimal left ideal for \(n>4\). Hence, we consider the auxiliary real subalgebra of \(C \hspace{-1.00006pt}\ell _{1,n}\) to prove a similar statement. We present the multidimensional Dirac–Hestenes equation in \(C \hspace{-1.00006pt}\ell _{1,n}\). We prove that one might obtain a solution to the multidimensional Dirac–Hestenes equation using a solution to the multidimensional Dirac equation and vice versa. We also show that the multidimensional Dirac–Hestenes equation has gauge invariance.

引入多维Dirac-Hestenes方程
探究狄拉克-赫斯尼斯方程的实解比探究狄拉克方程的复解更容易从几何角度研究粒子物理现象。本文提出了多维Dirac-Hestenes方程的一种公式。由于复化(Clifford)几何代数\(\mathbb {C}\otimes C \hspace{-1.00006pt}\ell _{1,n}\)的矩阵表示依赖于n的奇偶性,我们分别研究偶数和奇数情况。在几何代数\(C \hspace{-1.00006pt}\ell _{1,3}\)中,有一个关于最小左理想的一个元素分解成幂等子代数与实偶子代数的一个元素的乘积的唯一引理。该引理用于构造四维Dirac-Hestenes方程。类似引理在多维情况下是无效的,因为\(C \hspace{-1.00006pt}\ell _{1,n}\)的实偶子代数的维数大于\(n>4\)的最小左理想的维数。因此,我们考虑\(C \hspace{-1.00006pt}\ell _{1,n}\)的辅助实子代数来证明一个类似的命题。我们在\(C \hspace{-1.00006pt}\ell _{1,n}\)中给出了多维Dirac-Hestenes方程。我们证明了用多维狄拉克方程的解可以得到多维狄拉克-赫斯尼斯方程的解,反之亦然。我们还证明了多维Dirac-Hestenes方程具有规范不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信