Uncertainty Principles Associated with the Multi-dimensional Quaternionic Offset Linear Canonical Transform

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Yingchun Jiang, Sihua Ling, Yan Tang
{"title":"Uncertainty Principles Associated with the Multi-dimensional Quaternionic Offset Linear Canonical Transform","authors":"Yingchun Jiang,&nbsp;Sihua Ling,&nbsp;Yan Tang","doi":"10.1007/s00006-025-01379-6","DOIUrl":null,"url":null,"abstract":"<div><p>The paper is concerned with the definition, properties and uncertainty principles for the multi-dimensional quaternionic offset linear canonical transform. First, we define the multi-dimensional offset linear canonical transform based on matrices with symplectic structure. Then, we focus on the definition of the multi-dimensional quaternionic offset linear canonical transform and the corresponding convolution theorem. Finally, some uncertainty principles are established for the proposed multi-dimensional (quaternionic) offset linear canonical transform.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01379-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is concerned with the definition, properties and uncertainty principles for the multi-dimensional quaternionic offset linear canonical transform. First, we define the multi-dimensional offset linear canonical transform based on matrices with symplectic structure. Then, we focus on the definition of the multi-dimensional quaternionic offset linear canonical transform and the corresponding convolution theorem. Finally, some uncertainty principles are established for the proposed multi-dimensional (quaternionic) offset linear canonical transform.

多维四元数偏移线性正则变换的不确定性原理
本文讨论了多维四元数偏置线性正则变换的定义、性质和测不准原理。首先,我们定义了基于辛结构矩阵的多维偏移线性正则变换。然后,重点讨论了多维四元数偏移线性正则变换的定义和相应的卷积定理。最后,建立了多维(四元数)偏移线性正则变换的不确定性原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信