On Monogenic Functions and the Dirac Complex of Two Vector Variables

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Yun Shi, Wei Wang, Qingyan Wu
{"title":"On Monogenic Functions and the Dirac Complex of Two Vector Variables","authors":"Yun Shi,&nbsp;Wei Wang,&nbsp;Qingyan Wu","doi":"10.1007/s00006-025-01378-7","DOIUrl":null,"url":null,"abstract":"<div><p>A monogenic function of two vector variables is a function annihilated by two Dirac operators. We give the explicit form of differential operators in the Dirac complex resolving two Dirac operators and prove its ellipticity directly. This opens the door to apply the method of several complex variables to investigate this kind of monogenic functions. We prove the Poincaré lemma for this complex, i.e. the non-homogeneous equations are solvable under the compatibility condition, by solving the associated Hodge Laplacian equations of fourth order. As corollaries, we establish the Bochner–Martinelli integral representation formula for two Dirac operators and the Hartogs’ extension phenomenon for monogenic functions. We also apply abstract duality theorem to the Dirac complex to obtain the generalization of Malgrange’s vanishing theorem and establish the Hartogs–Bochner extension phenomenon for monogenic functions under the moment condition.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01378-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A monogenic function of two vector variables is a function annihilated by two Dirac operators. We give the explicit form of differential operators in the Dirac complex resolving two Dirac operators and prove its ellipticity directly. This opens the door to apply the method of several complex variables to investigate this kind of monogenic functions. We prove the Poincaré lemma for this complex, i.e. the non-homogeneous equations are solvable under the compatibility condition, by solving the associated Hodge Laplacian equations of fourth order. As corollaries, we establish the Bochner–Martinelli integral representation formula for two Dirac operators and the Hartogs’ extension phenomenon for monogenic functions. We also apply abstract duality theorem to the Dirac complex to obtain the generalization of Malgrange’s vanishing theorem and establish the Hartogs–Bochner extension phenomenon for monogenic functions under the moment condition.

关于单基因函数和两向量变量的Dirac复形
两个向量变量的单基因函数是被两个狄拉克算子湮灭的函数。给出了求解两个狄拉克算子的狄拉克复上微分算子的显式形式,并直接证明了其椭圆性。这为应用多复变量方法研究这类单基因函数打开了大门。通过求解相关的四阶Hodge laplace方程,证明了该复形的poincarcar引理,即在相容条件下非齐次方程是可解的。作为推论,我们建立了两个Dirac算子的Bochner-Martinelli积分表示公式和单基因函数的Hartogs扩展现象。将抽象对偶定理应用于Dirac复形,得到了Malgrange消失定理的推广,建立了单原函数在矩条件下的Hartogs-Bochner扩展现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信