{"title":"关于三元和广义Clifford代数中的酉群","authors":"Dmitry Shirokov","doi":"10.1007/s00006-025-01388-5","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss a generalization of Clifford algebras known as generalized Clifford algebras (in particular, ternary Clifford algebras). In these objects, we have a fixed higher-degree form (in particular, a ternary form) instead of a quadratic form in ordinary Clifford algebras. We present a natural realization of unitary Lie groups, which are important in physics and other applications, using only operations in generalized Clifford algebras and without using the corresponding matrix representations. Basis-free definitions of the determinant, trace, and characteristic polynomial in generalized Clifford algebras are introduced. Explicit formulas for all coefficients of the characteristic polynomial and inverse in generalized Clifford algebras are presented. The operation of Hermitian conjugation (or Hermitian transpose) in generalized Clifford algebras is introduced without using the corresponding matrix representations.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Unitary Groups in Ternary and Generalized Clifford Algebras\",\"authors\":\"Dmitry Shirokov\",\"doi\":\"10.1007/s00006-025-01388-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss a generalization of Clifford algebras known as generalized Clifford algebras (in particular, ternary Clifford algebras). In these objects, we have a fixed higher-degree form (in particular, a ternary form) instead of a quadratic form in ordinary Clifford algebras. We present a natural realization of unitary Lie groups, which are important in physics and other applications, using only operations in generalized Clifford algebras and without using the corresponding matrix representations. Basis-free definitions of the determinant, trace, and characteristic polynomial in generalized Clifford algebras are introduced. Explicit formulas for all coefficients of the characteristic polynomial and inverse in generalized Clifford algebras are presented. The operation of Hermitian conjugation (or Hermitian transpose) in generalized Clifford algebras is introduced without using the corresponding matrix representations.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01388-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01388-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On Unitary Groups in Ternary and Generalized Clifford Algebras
We discuss a generalization of Clifford algebras known as generalized Clifford algebras (in particular, ternary Clifford algebras). In these objects, we have a fixed higher-degree form (in particular, a ternary form) instead of a quadratic form in ordinary Clifford algebras. We present a natural realization of unitary Lie groups, which are important in physics and other applications, using only operations in generalized Clifford algebras and without using the corresponding matrix representations. Basis-free definitions of the determinant, trace, and characteristic polynomial in generalized Clifford algebras are introduced. Explicit formulas for all coefficients of the characteristic polynomial and inverse in generalized Clifford algebras are presented. The operation of Hermitian conjugation (or Hermitian transpose) in generalized Clifford algebras is introduced without using the corresponding matrix representations.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.