Rota-Baxter Operators of Nonzero Weight on the Split Octonions

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
A. S. Panasenko
{"title":"Rota-Baxter Operators of Nonzero Weight on the Split Octonions","authors":"A. S. Panasenko","doi":"10.1007/s00006-025-01389-4","DOIUrl":null,"url":null,"abstract":"<div><p>We describe Rota-Baxter operators on split octonions. It turns out that up to some transformations there exists exactly one such non-splitting operator over any field. We also obtain a description of all decompositions of split octonions over a quadratically closed field of characteristic different from 2 into a sum of two subalgebras, which describes the splitting Rota-Baxter operators. It completes the classification of Rota-Baxter operators on composition algebras of any weight.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01389-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We describe Rota-Baxter operators on split octonions. It turns out that up to some transformations there exists exactly one such non-splitting operator over any field. We also obtain a description of all decompositions of split octonions over a quadratically closed field of characteristic different from 2 into a sum of two subalgebras, which describes the splitting Rota-Baxter operators. It completes the classification of Rota-Baxter operators on composition algebras of any weight.

分割八元上非零权的Rota-Baxter算子
我们描述分裂八元数上的Rota-Baxter算子。结果表明,对于某些变换,在任何域上都存在一个这样的非分裂算子。我们还得到了特征不等于2的二次闭域上所有分裂八元数分解为两个子代数和的描述,它描述了分裂Rota-Baxter算子。完成了任意权值复合代数上Rota-Baxter算子的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信