{"title":"Rota-Baxter Operators of Nonzero Weight on the Split Octonions","authors":"A. S. Panasenko","doi":"10.1007/s00006-025-01389-4","DOIUrl":null,"url":null,"abstract":"<div><p>We describe Rota-Baxter operators on split octonions. It turns out that up to some transformations there exists exactly one such non-splitting operator over any field. We also obtain a description of all decompositions of split octonions over a quadratically closed field of characteristic different from 2 into a sum of two subalgebras, which describes the splitting Rota-Baxter operators. It completes the classification of Rota-Baxter operators on composition algebras of any weight.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01389-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We describe Rota-Baxter operators on split octonions. It turns out that up to some transformations there exists exactly one such non-splitting operator over any field. We also obtain a description of all decompositions of split octonions over a quadratically closed field of characteristic different from 2 into a sum of two subalgebras, which describes the splitting Rota-Baxter operators. It completes the classification of Rota-Baxter operators on composition algebras of any weight.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.