{"title":"Slice Regular Holomorphic Cliffordian Functions of Order k","authors":"Giulio Binosi","doi":"10.1007/s00006-025-01376-9","DOIUrl":null,"url":null,"abstract":"<div><p>Holomorphic Cliffordian functions of order <i>k</i> are functions in the kernel of the differential operator <span>\\(\\overline{\\partial }\\Delta ^k\\)</span>. When <span>\\(\\overline{\\partial }\\Delta ^k\\)</span> is applied to functions defined in the paravector space of some Clifford Algebra <span>\\(\\mathbb {R}_m\\)</span> with an odd number of imaginary units, the Fueter–Sce construction establishes a critical index <span>\\(k=\\frac{m-1}{2}\\)</span> (sometimes called Sce exponent) for which the class of slice regular functions is contained in the one of holomorphic Cliffordian functions of order <span>\\(\\frac{m-1}{2}\\)</span>. In this paper, we analyze the case <span>\\(k<\\frac{m-1}{2}\\)</span> and find that the polynomials of degree at most 2<i>k</i> are the only slice regular holomorphic Cliffordian functions of order <i>k</i>.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-025-01376-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01376-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Holomorphic Cliffordian functions of order k are functions in the kernel of the differential operator \(\overline{\partial }\Delta ^k\). When \(\overline{\partial }\Delta ^k\) is applied to functions defined in the paravector space of some Clifford Algebra \(\mathbb {R}_m\) with an odd number of imaginary units, the Fueter–Sce construction establishes a critical index \(k=\frac{m-1}{2}\) (sometimes called Sce exponent) for which the class of slice regular functions is contained in the one of holomorphic Cliffordian functions of order \(\frac{m-1}{2}\). In this paper, we analyze the case \(k<\frac{m-1}{2}\) and find that the polynomials of degree at most 2k are the only slice regular holomorphic Cliffordian functions of order k.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.