Slice Regular Holomorphic Cliffordian Functions of Order k

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Giulio Binosi
{"title":"Slice Regular Holomorphic Cliffordian Functions of Order k","authors":"Giulio Binosi","doi":"10.1007/s00006-025-01376-9","DOIUrl":null,"url":null,"abstract":"<div><p>Holomorphic Cliffordian functions of order <i>k</i> are functions in the kernel of the differential operator <span>\\(\\overline{\\partial }\\Delta ^k\\)</span>. When <span>\\(\\overline{\\partial }\\Delta ^k\\)</span> is applied to functions defined in the paravector space of some Clifford Algebra <span>\\(\\mathbb {R}_m\\)</span> with an odd number of imaginary units, the Fueter–Sce construction establishes a critical index <span>\\(k=\\frac{m-1}{2}\\)</span> (sometimes called Sce exponent) for which the class of slice regular functions is contained in the one of holomorphic Cliffordian functions of order <span>\\(\\frac{m-1}{2}\\)</span>. In this paper, we analyze the case <span>\\(k&lt;\\frac{m-1}{2}\\)</span> and find that the polynomials of degree at most 2<i>k</i> are the only slice regular holomorphic Cliffordian functions of order <i>k</i>.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-025-01376-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01376-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Holomorphic Cliffordian functions of order k are functions in the kernel of the differential operator \(\overline{\partial }\Delta ^k\). When \(\overline{\partial }\Delta ^k\) is applied to functions defined in the paravector space of some Clifford Algebra \(\mathbb {R}_m\) with an odd number of imaginary units, the Fueter–Sce construction establishes a critical index \(k=\frac{m-1}{2}\) (sometimes called Sce exponent) for which the class of slice regular functions is contained in the one of holomorphic Cliffordian functions of order \(\frac{m-1}{2}\). In this paper, we analyze the case \(k<\frac{m-1}{2}\) and find that the polynomials of degree at most 2k are the only slice regular holomorphic Cliffordian functions of order k.

k阶的切片正则全纯clifford函数
阶k的全态克利福德函数是微分算子(\overline{partial }\Delta ^k\)内核中的函数。当 \(\overline{/partial }\Delta ^k\)应用于某个具有奇数虚单元的克利福德代数 \(\mathbb {R}_m\)的旁向量空间中定义的函数时、Fueter-Sce构造建立了一个临界指数\(k=\frac{m-1}{2}\)(有时称为Sce指数),在这个指数下,切片正则函数类包含在阶\(\frac{m-1}{2}\)的全纯克利福德函数类中。在本文中,我们分析了 \(k<\frac{m-1}{2}\)的情况,并发现阶数至多为 2k 的多项式是唯一阶数为 k 的切片正则克利福德全函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信