{"title":"Physics of 2D Materials for Developing Smart Devices","authors":"Neeraj Goel, Rahul Kumar","doi":"10.1007/s40820-024-01635-7","DOIUrl":"10.1007/s40820-024-01635-7","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Extensively discussed the physics of various two-dimensional materials enabling them to fabricate smart devices.</p>\u0000 </li>\u0000 <li>\u0000 <p>Statistical and quantum physics for understanding the functioning of smart electronic devices with strategies for improving their performance.</p>\u0000 </li>\u0000 <li>\u0000 <p>New advancement in device architectures for developing smart devices.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01635-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143666028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Situ Partial-Cyclized Polymerized Acrylonitrile-Coated NCM811 Cathode for High-Temperature ≥ 100 °C Stable Solid-State Lithium Metal Batteries","authors":"Jiayi Zheng, Haolong Jiang, Xieyu Xu, Jie Zhao, Xia Ma, Weiwei Sun, Shuangke Liu, Wei Xie, Yufang Chen, ShiZhao Xiong, Hui Wang, Kai Xie, Yu Han, Maoyi Yi, Chunman Zheng, Qingpeng Guo","doi":"10.1007/s40820-025-01683-7","DOIUrl":"10.1007/s40820-025-01683-7","url":null,"abstract":"<div><p>High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density, but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes. To circumvent these issues, a continuous uniform layer polyacrylonitrile (PAN) was introduced on the surface of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> via in situ polymerization of acrylonitrile (AN). Furthermore, the partial-cyclized treatment of PAN (cPAN) coating layer presents high ionic and electron conductivity, which can accelerate interfacial Li<sup>+</sup> and electron diffusion simultaneously. And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation, which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode. Besides, the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure. Benefited from these, the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8% after 300 cycles and superior rate capability. And endow the solid-state battery with thermal safety stability even at high-temperature extreme environment. This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01683-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Water-Restrained Hydrogel Electrolytes with Repulsion-Driven Cationic Express Pathways for Durable Zinc-Ion Batteries","authors":"Dewu Lin, Yushuang Lin, Ruihong Pan, Jiapei Li, Anquan Zhu, Tian Zhang, Kai Liu, Dongyu Feng, Kunlun Liu, Yin Zhou, Chengkai Yang, Guo Hong, Wenjun Zhang","doi":"10.1007/s40820-025-01704-5","DOIUrl":"10.1007/s40820-025-01704-5","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>A novel cationic hydrogel electrolyte is prepared to address a significant challenge of balancing the tripartite trade-offs of hydrogel properties.</p>\u0000 </li>\u0000 <li>\u0000 <p>Cationic express pathways enable fast and selective Zn<sup>2+</sup> transport through dynamic ionic repulsion, achieving high ionic conductivity (28.7 mS cm<sup>−1</sup>) and Zn<sup>2+</sup> transference number (0.79).</p>\u0000 </li>\u0000 <li>\u0000 <p>The hydrogel demonstrates exceptional cycling stability across − 15 to 60 °C, showcasing great potential for practical flexible battery applications.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01704-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasi-Solid Gel Electrolytes for Alkali Metal Battery Applications","authors":"Jiahui Lu, Yingying Chen, Yaojie Lei, Pauline Jaumaux, Hao Tian, Guoxiu Wang","doi":"10.1007/s40820-024-01632-w","DOIUrl":"10.1007/s40820-024-01632-w","url":null,"abstract":"<div><p>Alkali metal batteries (AMBs) have undergone substantial development in portable devices due to their high energy density and durable cycle performance. However, with the rising demand for smart wearable electronic devices, a growing focus on safety and durability becomes increasingly apparent. An effective strategy to address these increased requirements involves employing the quasi-solid gel electrolytes (QSGEs). This review focuses on the application of QSGEs in AMBs, emphasizing four types of gel electrolytes and their influence on battery performance and stability. First, self-healing gels are discussed to prolong battery life and enhance safety through self-repair mechanisms. Then, flexible gels are explored for their mechanical flexibility, making them suitable for wearable devices and flexible electronics. In addition, biomimetic gels inspired by natural designs are introduced for high-performance AMBs. Furthermore, biomass materials gels are presented, derived from natural biomaterials, offering environmental friendliness and biocompatibility. Finally, the perspectives and challenges for future developments are discussed in terms of enhancing the ionic conductivity, mechanical strength, and environmental stability of novel gel materials. The review underscores the significant contributions of these QSGEs in enhancing AMBs performance, including increased lifespan, safety, and adaptability, providing new insights and directions for future research and applications in the field.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01632-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haijiao Yu, Jiqing Lu, Jie Yan, Tian Bai, Zhaoxuan Niu, Bin Ye, Wanli Cheng, Dong Wang, Siqi Huan, Guangping Han
{"title":"Selective Emission Fabric for Indoor and Outdoor Passive Radiative Cooling in Personal Thermal Management","authors":"Haijiao Yu, Jiqing Lu, Jie Yan, Tian Bai, Zhaoxuan Niu, Bin Ye, Wanli Cheng, Dong Wang, Siqi Huan, Guangping Han","doi":"10.1007/s40820-025-01713-4","DOIUrl":"10.1007/s40820-025-01713-4","url":null,"abstract":"<div><p>Radiative cooling fabric creates a thermally comfortable environment without energy input, providing a sustainable approach to personal thermal management. However, most currently reported fabrics mainly focus on outdoor cooling, ignoring to achieve simultaneous cooling both indoors and outdoors, thereby weakening the overall cooling performance. Herein, a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling. The fabric achieves 94% reflectance performance in the sunlight band (0.3–2.5 µm) and 6% in the mid-infrared band (2.5–25 µm), effectively minimizing heat absorption and radiation release obstruction. It also demonstrates 81% radiative emission performance in the atmospheric window band (8–13 µm) and 25% radiative transmission performance in the mid-infrared band (2.5–25 μm), providing 60 and 26 W m<sup>−2</sup> net cooling power outdoors and indoors. In practical applications, the fabric achieves excellent indoor and outdoor human cooling, with temperatures 1.4–5.5 °C lower than typical polydimethylsiloxane film. This work proposes a novel design for the advanced radiative cooling fabric, offering significant potential to realize sustainable personal thermal management.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01713-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Shen, Zhejia Zhang, Zhujun Yao, Mengge Jin, Jintian Gao, Yuhan Zhao, Wenzhong Bao, Yabin Sun, He Tian
{"title":"A Valuable and Low-Budget Process Scheme of Equivalized 1 nm Technology Node Based on 2D Materials","authors":"Yang Shen, Zhejia Zhang, Zhujun Yao, Mengge Jin, Jintian Gao, Yuhan Zhao, Wenzhong Bao, Yabin Sun, He Tian","doi":"10.1007/s40820-025-01702-7","DOIUrl":"10.1007/s40820-025-01702-7","url":null,"abstract":"<div><p>Emerging two-dimensional (2D) semiconductors are among the most promising materials for ultra-scaled transistors due to their intrinsic atomic-level thickness. As the stacking process advances, the complexity and cost of nanosheet field-effect transistors (NSFETs) and complementary FET (CFET) continue to rise. The 1 nm technology node is going to be based on Si-CFET process according to international roadmap for devices and systems (IRDS) (2022, https://irds.ieee.org/), but not publicly confirmed, indicating that more possibilities still exist. The miniaturization advantage of 2D semiconductors motivates us to explore their potential for reducing process costs while matching the performance of next-generation nodes in terms of area, power consumption and speed. In this study, a comprehensive framework is built. A set of MoS<sub>2</sub> NSFETs were designed and fabricated to extract the key parameters and performances. And then for benchmarking, the sizes of 2D-NSFET are scaled to a extent that both of the Si-CFET and 2D-NSFET have the same average device footprint. Under these conditions, the frequency of ultra-scaled 2D-NSFET is found to improve by 36% at a fixed power consumption. This work verifies the feasibility of replacing silicon-based CFETs of 1 nm node with 2D-NSFETs and proposes a 2D technology solution for 1 nm nodes, i.e., “2D eq 1 nm” nodes. At the same time, thanks to the lower characteristic length of 2D semiconductors, the miniaturized 2D-NSFET achieves a 28% frequency increase at a fixed power consumption. Further, developing a standard cell library, these devices obtain a similar trend in 16-bit RISC-V CPUs. This work quantifies and highlights the advantages of 2D semiconductors in advanced nodes, offering new possibilities for the application of 2D semiconductors in high-speed and low-power integrated circuits.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01702-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porous Microreactor Chip for Photocatalytic Seawater Splitting over 300 Hours at Atmospheric Pressure","authors":"Desheng Zhu, Zhipeng Dong, Chengmei Zhong, Junhong Zhang, Qi Chen, Ni Yin, Wencheng Jia, Xiong Zheng, Fengzai Lv, Zhong Chen, Zhenchao Dong, Wencai Huang","doi":"10.1007/s40820-025-01703-6","DOIUrl":"10.1007/s40820-025-01703-6","url":null,"abstract":"<p>Photocatalytic seawater splitting is an attractive way for producing green hydrogen. Significant progresses have been made recently in catalytic efficiencies, but the activity of catalysts can only maintain stable for about 10 h. Here, we develop a vacancy-engineered Ag<sub>3</sub>PO<sub>4</sub>/CdS porous microreactor chip photocatalyst, operating in seawater with a performance stability exceeding 300 h. This is achieved by the establishment of both catalytic selectivity for impurity ions and tailored interactions between vacancies and sulfur species. Efficient transport of carriers with strong redox ability is ensured by forming a heterojunction within a space charge region, where the visualization of potential distribution confirms the key design concept of our chip. Moreover, the separation of oxidation and reduction reactions in space inhibits the reverse recombination, making the chip capable of working at atmospheric pressure. Consequently, in the presence of Pt co-catalysts, a high solar-to-hydrogen efficiency of 0.81% can be achieved in the whole durability test. When using a fully solar-driven 256 cm<sup>2</sup> hydrogen production prototype, a H<sub>2</sub> evolution rate of 68.01 mmol h<sup>−1</sup> m<sup>−2</sup> can be achieved under outdoor insolation. Our findings provide a novel approach to achieve high selectivity, and demonstrate an efficient and scalable prototype suitable for practical solar H<sub>2</sub> production.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01703-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sung Min Lee, Keun Hwan Oh, Hwan Yeop Jeong, Duk Man Yu, Tae-Ho Kim
{"title":"Regulating Water Transport Paths on Porous Transport Layer by Hydrophilic Patterning for Highly Efficient Unitized Regenerative Fuel Cells","authors":"Sung Min Lee, Keun Hwan Oh, Hwan Yeop Jeong, Duk Man Yu, Tae-Ho Kim","doi":"10.1007/s40820-025-01684-6","DOIUrl":"10.1007/s40820-025-01684-6","url":null,"abstract":"<div><div>\u0000 <span>AbstractSection</span>\u0000 Highlights\u0000 <ul>\u0000 <li>\u0000 <p>Novel amphiphilic patterned titanium porous transport layers (PTLs) significantly enhance the round-trip efficiency of unitized regenerative fuel cells (URFCs), achieving an impressive round-trip efficiency of 25.7% at a current density of 2 A cm<sup>-2</sup>.</p>\u0000 </li>\u0000 <li>\u0000 <p>The serpentine configuration of the patterned PTL excels in both fuel cell (FC) and water electrolyzer modes, resulting in a sevenfold increase in current density in FC mode compared to URFCs using hydrophilic pristine Ti PTLs.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01684-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiong Xiong Liu, Long Pan, Haotian Zhang, Pengcheng Yuan, Mufan Cao, Yaping Wang, Zeyuan Xu, Min Gao, Zheng Ming Sun
{"title":"Host–Guest Inversion Engineering Induced Superionic Composite Solid Electrolytes for High-Rate Solid-State Alkali Metal Batteries","authors":"Xiong Xiong Liu, Long Pan, Haotian Zhang, Pengcheng Yuan, Mufan Cao, Yaping Wang, Zeyuan Xu, Min Gao, Zheng Ming Sun","doi":"10.1007/s40820-025-01691-7","DOIUrl":"10.1007/s40820-025-01691-7","url":null,"abstract":"<div><p>Composite solid electrolytes (CSEs) are promising for solid-state Li metal batteries but suffer from inferior room-temperature ionic conductivity due to sluggish ion transport and high cost due to expensive active ceramic fillers. Here, a host–guest inversion engineering strategy is proposed to develop superionic CSEs using cost-effective SiO<sub>2</sub> nanoparticles as passive ceramic hosts and poly(vinylidene fluoride-hexafluoropropylene) (PVH) microspheres as polymer guests, forming an unprecedented “polymer guest-in-ceramic host” (i.e., PVH-in-SiO<sub>2</sub>) architecture differing from the traditional “ceramic guest-in-polymer host”. The PVH-in-SiO<sub>2</sub> exhibits excellent Li-salt dissociation, achieving high-concentration free Li<sup>+</sup>. Owing to the low diffusion energy barriers and high diffusion coefficient, the free Li<sup>+</sup> is thermodynamically and kinetically favorable to migrate to and transport at the SiO<sub>2</sub>/PVH interfaces. Consequently, the PVH-in-SiO<sub>2</sub> delivers an exceptional ionic conductivity of 1.32 × 10<sup>−3</sup> S cm<sup>−1</sup> at 25 °C (vs<i>.</i> typically 10<sup>−5</sup>–10<sup>−4</sup> S cm<sup>−1</sup> using high-cost active ceramics), achieved under an ultralow residual solvent content of 2.9 wt% (vs<i>.</i> 8–15 wt% in other CSEs). Additionally, PVH-in-SiO<sub>2</sub> is electrochemically stable with Li anode and various cathodes. Therefore, the PVH-in-SiO<sub>2</sub> demonstrates excellent high-rate cyclability in LiFePO<sub>4</sub>|Li full cells (92.9% capacity-retention at 3C after 300 cycles under 25 °C) and outstanding stability with high-mass-loading LiFePO<sub>4</sub> (9.2 mg cm<sup>−1</sup>) and high-voltage NCM622 (147.1 mAh g<sup>−1</sup>). Furthermore, we verify the versatility of the host–guest inversion engineering strategy by fabricating Na-ion and K-ion-based PVH-in-SiO<sub>2</sub> CSEs with similarly excellent promotions in ionic conductivity. Our strategy offers a simple, low-cost approach to fabricating superionic CSEs for large-scale application of solid-state Li metal batteries and beyond. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01691-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wuxian Peng, Linbo Li, Xiyue Bai, Ping Yi, Yu Xie, Lejia Wang, Wei Du, Tao Wang, Jian-Qiang Zhong, Yuan Li
{"title":"Observation of Ice-Like Two-Dimensional Flakes on Self-Assembled Protein Monolayer without Nanoconfinement under Ambient Conditions","authors":"Wuxian Peng, Linbo Li, Xiyue Bai, Ping Yi, Yu Xie, Lejia Wang, Wei Du, Tao Wang, Jian-Qiang Zhong, Yuan Li","doi":"10.1007/s40820-025-01689-1","DOIUrl":"10.1007/s40820-025-01689-1","url":null,"abstract":"<div><p>Directly correlating the morphology and composition of interfacial water is vital not only for studying water icing under critical conditions but also for understanding the role of protein–water interactions in bio-relevant systems. In this study, we present a model system to study two-dimensional (2D) water layers under ambient conditions by using self-assembled monolayers (SAMs) supporting the physisorption of the Cytochrome C (Cyt C) protein layer. We observed that the 2D island-like water layers were uniformly distributed on the SAMs as characterized by atomic force microscopy, and their composition was confirmed by nano-atomic force microscopy-infrared spectroscopy and Raman spectroscopy. In addition, these 2D flakes could grow under high-humidity conditions or melt upon the introduction of a heat source. The formation of these flakes is attributed to the activation energy for water desorption from the Cyt C being nearly twofold high than that from the SAMs. Our results provide a new and effective method for further understanding the water–protein interactions. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01689-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}