{"title":"Pickering Emulsion-Driven MXene/Silk Fibroin Hydrogels with Programmable Functional Networks for EMI Shielding and Solar Evaporation.","authors":"Guang Yin,Jing Wu,Chengzhang Qi,Xinfeng Zhou,Zhong-Zhen Yu,Hao-Bin Zhang","doi":"10.1007/s40820-025-01818-w","DOIUrl":"https://doi.org/10.1007/s40820-025-01818-w","url":null,"abstract":"Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields. However, the controllable manipulation of functional electron/mass transport networks in hydrogels remains rather challenging to realize. We describe a general and versatile surfactant-free emulsion construction strategy to customize robust functional hydrogels with programmable hierarchical structures. Significantly, the amphipathy of silk fibroin (SF) and the reinforcement effect of MXene nanosheets produce sable Pickering emulsion without any surfactant. The followed microphase separation and self-cross-linking of the SF chains induced by the solvent exchange convert the composite emulsions into high-performance hydrogels with tunable microstructures and functionalities. As a proof-of-concept, the controllable regulation of the ordered conductive network and the water polarization effect confer the hydrogels with an intriguing electromagnetic interference shielding efficiency (~ 64 dB). Also, the microstructures of functional hydrogels are modulated to promote mass/heat transfer properties. The amino acids of SF and the surface terminations of MXene help reduce the enthalpy of water evaporation and the hierarchical structures of the hydrogels accelerate evaporation process, expecting far superior evaporation performance (~ 3.5 kg m⁻2 h⁻1) and salt tolerance capability compared to other hydrogel evaporators. Our findings open a wealth of opportunities for producing functional hydrogel devices with integrated structure-dependent properties.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"39 1","pages":"312"},"PeriodicalIF":26.6,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D-Printed Boron-Nitrogen Doped Carbon Electrodes for Sustainable Wastewater Treatment via MPECVD.","authors":"Iwona Kaczmarzyk,Malgorzata Szopińska,Patryk Sokołowski,Simona Sabbatini,Gabriel Strugala,Jacek Ryl,Gianni Barucca,Per Falås,Robert Bogdanowicz,Mattia Pierpaoli","doi":"10.1007/s40820-025-01827-9","DOIUrl":"https://doi.org/10.1007/s40820-025-01827-9","url":null,"abstract":"This study proposes a novel and sustainable method for fabricating 3D-printed carbon-based electrodes for electrochemical wastewater treatment. We prepared B,N-doped carbon electrodes with hierarchical porosity and a significantly enhanced surface area-to-volume ratio (up to 180%) compared to non-optimized analogues using a synergistic combination of 3D printing, phase inversion, and microwave plasma-enhanced chemical vapor deposition. This process allows the metal-free growth of vertically aligned carbon nanostructures directly onto polymer-derived substrates, resulting in a 20-fold increase in the electrochemically active surface area. Computational fluid dynamics simulations were used to improve mass transport and reduce pressure drop. Electrochemical characterization demonstrated that the optimized electrodes performed significantly better, achieving 4.7-, 4-, and 6.5-fold increases in the degradation rates of atenolol, metoprolol, and propranolol, respectively, during electrochemical oxidation. These results highlight the efficacy of the integrated fabrication and simulation approach in producing high-performance electrodes for sustainable wastewater treatment applications.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"101 1","pages":"311"},"PeriodicalIF":26.6,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Face-/Edge-Shared 3D Perovskitoid Single Crystals with Suppressed Ion Migration for Stable X-Ray Detector.","authors":"Zimin Zhang,Xiaoli Wang,Huayang Li,Dong Li,Yang Zhang,Nan Shen,Xue-Feng Yu,Yucheng Liu,Shengzhong Liu,Haomin Song,Yanliang Liu,Xingzhu Wang,Shi Chen","doi":"10.1007/s40820-025-01788-z","DOIUrl":"https://doi.org/10.1007/s40820-025-01788-z","url":null,"abstract":"Although three-dimensional metal halide perovskites are promising candidates for direct X-ray detection, the ion migration of perovskites seriously affects the detector stability. Herein, face-/edge-shared 3D heterometallic glycinate hybrid perovskitoid Pb2CuGly2X4 (Gly = -O2C-CH2-NH2; X = Cl, Br) single crystals (SCs), in which the adjacent lead halide layers are linked by large-sized Cu(Gly)2 pillars, are synthesized in water. The Cu(Gly)2 pillars in combination with face-/edge-shared inorganic skeleton are found able to synergistically suppress the ion migration, delivering a high ion migration activation energy (Ea) of 1.06 eV. The Pb2CuGly2Cl4 SC X-ray detector displays extremely low dark current drift of 1.20 × 10-9 nA mm-1 s-1 V-1 under high electric field (120 V mm-1) and continuous X-ray irradiation (2.86 Gy), and a high sensitivity of 9,250 μC Gy-1 cm-2 is also achieved. More excitingly, the Pb2CuGly2Cl4 nanocrystal can be easily dispersed in water and directly blade-coated on thin-film transistor (TFT) array substrate, and the obtained Pb2CuGly2Cl4-based TFT array detector offers an X-ray imaging capability with spatial resolution of 2.2 lp mm-1.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":"310"},"PeriodicalIF":26.6,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Reliability Thermoreceptors with Minimal Temporal and Spatial Variations Through Photo-Induced Patterning Thermoelectrics.","authors":"Chunyu Du,Yue Hu,Xiao Xiao,Farid Manshaii,Lirong Liang,Jun Chen,Guangming Chen","doi":"10.1007/s40820-025-01821-1","DOIUrl":"https://doi.org/10.1007/s40820-025-01821-1","url":null,"abstract":"The development of bionic sensing devices with advanced physiological functionalities has attracted significant attention in flexible electronics. In this study, we innovatively develop an air-stable photo-induced n-type dopant and a sophisticated photo-induced patterning technology to construct high-resolution joint-free p-n integrated thermoelectric devices. The exceptional stability of the photo-induced n-type dopant, combined with our meticulously engineered joint-free device architecture, results in extremely low temporal and spatial variations. These minimized variations, coupled with superior linearity, position our devices as viable candidates for artificial thermoreceptors capable of sensing external thermal noxious stimuli. By integrating them into a robotic arm with a pain perception system, we demonstrate accurate pain responses to external thermal stimuli. The system accurately discerns pain levels and initiates appropriate protective actions across varying intensities. Our findings present a novel strategy for constructing high-resolution thermoelectric sensing devices toward precise biomimetic thermoreceptors.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"25 1","pages":"307"},"PeriodicalIF":26.6,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrochemical Solid-State Electrolyte Reactors: Configurations, Applications, and Future Prospects.","authors":"Weisong Li,Yanjie Zhai,Shanhe Gong,Yingying Zhou,Qing Xia,Jie Wu,Xiao Zhang","doi":"10.1007/s40820-025-01824-y","DOIUrl":"https://doi.org/10.1007/s40820-025-01824-y","url":null,"abstract":"The advancement of clean electricity is positioning electrochemical reactors at the forefront of future electrosynthesis technologies. Solid-state electrolyte (SSE) reactors emerge for their distinctive configurations and ability to produce high-purity fuels and chemicals efficiently without additional purification steps. This marks a substantial development in electrochemical synthesis. In this perspective, we critically examine cutting-edge innovations in SSE devices with particular emphasis on the architectural introduction of core cell components, novel electrochemical cell configurations, and assembly methodologies. The use of SSE reactors is presently undergoing a pivotal transition from fundamental laboratory investigations to large-scale engineering implementations, demonstrating remarkable progress in multiple domains: (1) sustainable synthesis of high-value organic acids (formic and acetic acids), (2) production of critical oxidizers hydrogen peroxide (H2O2) and liquid fuels (ethanol), (3) ammonia (NH3) production, (4) carbon capture technologies, (5) lithium recovery and recycling, and (6) tandem or coupling strategies for high-value-added products. Importantly, the transformative potential in environmental remediation, particularly for airborne pollutant sequestration and advanced wastewater purification, is addressed. Additionally, the innovative architectural blueprints for next-generation SSE stack are presented, aiming to establish a comprehensive framework to guide the transition from laboratory-scale innovation to industrial-scale deployment of SSE devices in the foreseeable future.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"45 1","pages":"306"},"PeriodicalIF":26.6,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Wang,Gaolei Dong,Fei Pan,Cong Lin,Bin Yuan,Yang Yang,Wei Lu
{"title":"Metal-Support Interaction Induced Electron Localization in Rationally Designed Metal Sites Anchored MXene Enables Boosted Electromagnetic Wave Attenuation.","authors":"Xiao Wang,Gaolei Dong,Fei Pan,Cong Lin,Bin Yuan,Yang Yang,Wei Lu","doi":"10.1007/s40820-025-01819-9","DOIUrl":"https://doi.org/10.1007/s40820-025-01819-9","url":null,"abstract":"The electron localization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well-controlled electron localization and elucidate the related EMW loss mechanisms for current researches. In this study, a novel two-dimensional MXene (Ti3C2Tx) nanosheet decorated with Ni nanoclusters (Ni-NC) system to construct an effective electron localization model based on electronic orbital structure is explored. Theoretical simulations and experimental results reveal that the metal-support interaction between Ni-NC and MXene disrupts symmetric electronic environments, leading to enhanced electron localization and dipole polarization. Additionally, Ni-NC generate a strong interfacial electric field, strengthening heterointerface interactions and promoting interfacial polarization. As a result, the optimized material achieves an exceptional reflection loss (RLmin) of - 54 dB and a broad effective absorption bandwidth of 6.8 GHz. This study offers critical insights into the in-depth relationship between electron localization and EMW dissipation, providing a pathway for electron localization engineering in functional materials such as semiconductors, spintronics, and catalysis.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"25 1","pages":"309"},"PeriodicalIF":26.6,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"B-Bridge Regulated Asymmetric Dual-Atomic Catalysts for Synergistically Enhanced Styrene Mineralization and CO2 Reduction.","authors":"Xiai Zhang,Zhongshuang Xu,Xinwei Zhang,Jingquan Wang,Dan Liu,Huanran Miao,Tong Wang,Zhimao Yang,Qikui Fan,Chuncai Kong","doi":"10.1007/s40820-025-01820-2","DOIUrl":"https://doi.org/10.1007/s40820-025-01820-2","url":null,"abstract":"Developing innovative resource utilization strategies to achieve sustainable recycling of waste-to-fuel is highly desirable, yet the design of cost-effective bifunctional catalysts with dual high-efficiency remains unexplored. While the Fenton-like reaction relies on enhancing peroxymonosulfate (PMS) adsorption and accelerating interfacial electron transfer to improve kinetic rates, CO2 reduction is constrained by sluggish kinetics and competing hydrogen evolution reaction. Herein, we construct a bifunctional catalyst (NiFe-BNC) featuring dual-atomic active sites by introducing boron atoms into a biomass-derived chitosan substrate rich in functional groups, which optimizes atomic coordination environments. In situ experiments and density functional theory calculations reveal that B-atom modulation facilitates carbon substrate defect enrichment, while the charge-tuning effect between metal sites and \"boron electron bridge\" optimizes PMS adsorption configurations. This synergistic effect facilitates the interfacial electron transfer and enhances the CO2 adsorption capacity of NiFe-BNC by 6 times that of NiFe-NC. The obtained NiFe-BNC exhibits significantly enhanced catalytic activity and selectivity, realizing 99% efficient degradation of volatile organic pollutants in the flowing phase within 2 h and stable mineralization exceeding 60%, while achieving a large current density of 1000 mA cm-2 and CO Faraday efficiency of 98% in the flow electrolytic cell. This work innovatively paves a new way for the rational design of cost-effective functional catalysts to achieve carbon cycle utilization.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"51 1","pages":"304"},"PeriodicalIF":26.6,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dicyandiamide-Driven Tailoring of the n-Value Distribution and Interface Dynamics for High-Performance ACI 2D Perovskite Solar Cells.","authors":"Ge Chen,Yunlong Gan,Shiheng Wang,Xueru Liu,Jing Yang,Sihui Peng,Yingjie Zhao,Pengwei Li,Asliddin Komilov,Yanlin Song,Yiqiang Zhang","doi":"10.1007/s40820-025-01817-x","DOIUrl":"https://doi.org/10.1007/s40820-025-01817-x","url":null,"abstract":"Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies (> 26%) yet face stability challenges. Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects. Herein, we introduce dicyanodiamide (DCD) to simultaneously address these dual limitations in GA(MA)nPbnI3n+1 perovskites. The guanidine group in DCD passivates undercoordinated Pb2+ and MA+ vacancies at the perovskite/TiO2 interface, while cyano groups eliminate oxygen vacancies in TiO2 via Ti4+-CN coordination, reducing interfacial trap density by 73% with respect to the control sample. In addition, DCD regulates crystallization kinetics, suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases, which benefit for carrier transport. This dual-functional modification enhances charge transport and stabilizes energy-level alignment. The optimized devices achieve a record power conversion efficiency of 21.54% (vs. 19.05% control) and retain 94% initial efficiency after 1200 h, outperforming unmodified counterparts (84% retention). Combining defect passivation with phase homogenization, this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites, providing a universal framework for interface engineering in high-performance optoelectronics.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"40 1","pages":"305"},"PeriodicalIF":26.6,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heteroatoms Synergistic Anchoring Vacancies in Phosphorus-Doped CoSe2 Enable Ultrahigh Activity and Stability in Li-S Batteries.","authors":"Xiaoya Zhou,Wei Mao,Chengwei Ye,Qi Liang,Peng Wang,Xuebin Wang,Shaochun Tang","doi":"10.1007/s40820-025-01806-0","DOIUrl":"https://doi.org/10.1007/s40820-025-01806-0","url":null,"abstract":"Electrocatalyst activity and stability demonstrate a \"seesaw\" relationship. Introducing vacancies (Vo) enhances the activity by improving reactant affinity and increasing accessible active sites. However, deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability. Herein, a novel \"heteroatoms synergistic anchoring vacancies\" strategy is proposed to address the trade-off between high activity and stability. Phosphorus-doped CoSe2 with remained rich selenium vacancies (P-CS-Vo-0.5) was synthesized by producing abundant selenium Vo followed by controlled P atom doping. Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms. Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites, accelerating polysulfide conversion, while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration, enhancing structural robustness. The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g-1 at 0.2C, and maintain 5.04 mAh cm-2 at a high sulfur loading (5.7 mg cm-2, 5.0 μL mg-1), achieving 95.1% capacity retention after 80 cycles. This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"19 1","pages":"308"},"PeriodicalIF":26.6,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144370438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"15 Years of Progress on Transition Metal-Based Electrocatalysts for Microbial Electrochemical Hydrogen Production: From Nanoscale Design to Macroscale Application.","authors":"Seyed Masoud Parsa, Zhijie Chen, Huu Hao Ngo, Wei Wei, Xinbo Zhang, Ying Liu, Bing-Jie Ni, Wenshan Guo","doi":"10.1007/s40820-025-01781-6","DOIUrl":"10.1007/s40820-025-01781-6","url":null,"abstract":"<p><p>Designing high-performance electrocatalysts is one of the key challenges in the development of microbial electrochemical hydrogen production. Transition metal-based (TM-based) electrocatalysts are introduced as an astonishing alternative for future catalysts by addressing several disadvantages, like the high cost and low performance of noble metal and metal-free electrocatalysts, respectively. In this critical review, a comprehensive analysis of the major development of all families of TM-based catalysts from the beginning development of microbial electrolysis cells in the last 15 years is presented. Importantly, pivotal design parameters such as selecting efficient synthesis methods based on the type of material, main criteria during each synthesizing method, and the pros and cons of various procedures are highlighted and compared. Moreover, procedures for tuning and tailoring the structures, advanced strategies to promote active sites, and the potential for implementing novel unexplored TM-based hybrid structures suggested. Furthermore, consideration for large-scale application of TM-based catalysts for future mass production, including life cycle assessment, cost assessment, economic analysis, and recently pilot-scale studies were highlighted. Of great importance, the potential of utilizing artificial intelligence and advanced computational methods such as active learning, microkinetic modeling, and physics-informed machine learning in designing high-performance electrodes in successful practices was elucidated. Finally, a conceptual framework for future studies and remaining challenges on different aspects of TM-based electrocatalysts in microbial electrolysis cells is proposed.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"303"},"PeriodicalIF":26.6,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144324119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}