Wen Di Zhang,Bing Li,Wei Wei Wang,Xing Ya Wang,Yan Cheng,An Quan Jiang
{"title":"Ultrahigh Dielectric Permittivity of a Micron-Sized Hf0.5Zr0.5O2 Thin-Film Capacitor After Missing of a Mixed Tetragonal Phase.","authors":"Wen Di Zhang,Bing Li,Wei Wei Wang,Xing Ya Wang,Yan Cheng,An Quan Jiang","doi":"10.1007/s40820-025-01841-x","DOIUrl":"https://doi.org/10.1007/s40820-025-01841-x","url":null,"abstract":"Innovative use of HfO2-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges, which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices. During bipolar high electric-field cycling in numbers close to dielectric breakdown, the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf0.5Zr0.5O2 thin-film capacitors. Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85 μm when the ferroelectricity suddenly disappears without high-field cycling. The stored charge density is as high as 183 μC cm-2 at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 1012 without inducing dielectric breakdown. The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase. The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries. The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"679 1","pages":"6"},"PeriodicalIF":26.6,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144652770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rulu Huang,Chao Liu,Kaili Zhang,Jianchun Jiang,Ziqi Tian,Yongming Chai,Kui Wang
{"title":"A Promising Strategy for Solvent-Regulated Selective Hydrogenation of 5-Hydroxymethylfurfural over Porous Carbon-Supported Ni-ZnO Nanoparticles.","authors":"Rulu Huang,Chao Liu,Kaili Zhang,Jianchun Jiang,Ziqi Tian,Yongming Chai,Kui Wang","doi":"10.1007/s40820-025-01847-5","DOIUrl":"https://doi.org/10.1007/s40820-025-01847-5","url":null,"abstract":"Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization. Herein, we report porous carbon-supported Ni-ZnO nanoparticles catalyst (Ni-ZnO/AC) synthesized via low-temperature coprecipitation, exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural (HMF). A linear correlation is first observed between solvent polarity (ET(30)) and product selectivity within both polar aprotic and protic solvent classes, suggesting that solvent properties play a vital role in directing reaction pathways. Among these, 1,4-dioxane (aprotic) favors the formation of 2,5-bis(hydroxymethyl)furan (BHMF) with 97.5% selectivity, while isopropanol (iPrOH, protic) promotes 2,5-dimethylfuran production with up to 99.5% selectivity. Mechanistic investigations further reveal that beyond polarity, proton-donating ability is critical in facilitating hydrodeoxygenation. iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal, lowering the activation barrier. In contrast, 1,4-dioxane, lacking hydrogen bond donors, stabilizes BHMF and hinders further conversion. Density functional theory calculations confirm a lower activation energy in iPrOH (0.60 eV) compared to 1,4-dioxane (1.07 eV). This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation, highlighting the decisive role of solvent-catalyst-substrate interactions.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"7 1","pages":"5"},"PeriodicalIF":26.6,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144652954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical Properties Analysis of Flexible Memristors for Neuromorphic Computing.","authors":"Zhenqian Zhu,Jiheng Shui,Tianyu Wang,Jialin Meng","doi":"10.1007/s40820-025-01825-x","DOIUrl":"https://doi.org/10.1007/s40820-025-01825-x","url":null,"abstract":"The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications. Inspired by in-memory computing architecture of human brain, flexible memristors exhibit great application potential in emulating artificial synapses for high-efficiency and low power consumption neuromorphic computing. This paper provides comprehensive overview of flexible memristors from perspectives of development history, material system, device structure, mechanical deformation method, device performance analysis, stress simulation during deformation, and neuromorphic computing applications. The recent advances in flexible electronics are summarized, including single device, device array and integration. The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply, paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"73 1","pages":"2"},"PeriodicalIF":26.6,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144652925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Da-Qian Cai,Hengyue Xu,Tong Xue,Jin-Lin Yang,Hong Jin Fan
{"title":"A Synchronous Strategy to Zn-Iodine Battery by Polycationic Long-Chain Molecules.","authors":"Da-Qian Cai,Hengyue Xu,Tong Xue,Jin-Lin Yang,Hong Jin Fan","doi":"10.1007/s40820-025-01854-6","DOIUrl":"https://doi.org/10.1007/s40820-025-01854-6","url":null,"abstract":"Aqueous Zn-iodine batteries (ZIBs) face the formidable challenges towards practical implementation, including metal corrosion and rampant dendrite growth on the Zn anode side, and shuttle effect of polyiodide species from the cathode side. These challenges lead to poor cycle stability and severe self-discharge. From the fabrication and cost point of view, it is technologically more viable to deploy electrolyte engineering than electrode protection strategies. More importantly, a synchronous method for modulation of both cathode and anode is pivotal, which has been often neglected in prior studies. In this work, cationic poly(allylamine hydrochloride) (Pah+) is adopted as a low-cost dual-function electrolyte additive for ZIBs. We elaborate the synchronous effect by Pah+ in stabilizing Zn anode and immobilizing polyiodide anions. The fabricated Zn-iodine coin cell with Pah+ (ZnI2 loading: 25 mg cm-2) stably cycles 1000 times at 1 C, and a single-layered 3 × 4 cm2 pouch cell (N/P ratio ~ 1.5) with the same mass loading cycles over 300 times with insignificant capacity decay.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"29 4 1","pages":"3"},"PeriodicalIF":26.6,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144652926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yangmei Xin,Minmin Zhu,Haizhong Zhang,Xinghui Wang
{"title":"High-Entropy Materials: A New Paradigm in the Design of Advanced Batteries.","authors":"Yangmei Xin,Minmin Zhu,Haizhong Zhang,Xinghui Wang","doi":"10.1007/s40820-025-01842-w","DOIUrl":"https://doi.org/10.1007/s40820-025-01842-w","url":null,"abstract":"High-entropy materials (HEMs) have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability, enhanced ionic conductivity, superior mechanical strength, and outstanding catalytic activity. These distinctive characteristics render HEMs highly suitable for various battery components, such as electrodes, electrolytes, and catalysts. This review systematically examines recent advances in the application of HEMs for energy storage, beginning with fundamental concepts, historical development, and key definitions. Three principal categories of HEMs, namely high-entropy alloys, high-entropy oxides, and high-entropy MXenes, are analyzed with a focus on electrochemical performance metrics such as specific capacity, energy density, cycling stability, and rate capability. The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion. Furthermore, the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted. The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"29 1","pages":"1"},"PeriodicalIF":26.6,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144645984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Core-Shell IrPt Nanoalloy on La/Ni-Co3O4 for High-Performance Bifunctional PEM Electrolysis with Ultralow Noble Metal Loading.","authors":"Yifei Liu,Xinmeng Er,Xinyao Wang,Hangxing Ren,Wenchao Wang,Feng Cao,Taiyan Zhang,Pan Liu,Yakun Yuan,Fangbo Yu,Yang Ren,Fuqiang Huang,Wenjiang Ding,Lina Chong","doi":"10.1007/s40820-025-01845-7","DOIUrl":"https://doi.org/10.1007/s40820-025-01845-7","url":null,"abstract":"The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis (PEMWE). We present an iridium-platinum nanoalloy (IrPt) supported on lanthanum and nickel co-doped cobalt oxide, featuring a core-shell architecture with an amorphous IrPtOx shell and an IrPt core. This catalyst exhibits exceptional bifunctional activity for oxygen and hydrogen evolution reactions in acidic media, achieving 2 A cm-2 at 1.72 V in a PEMWE device with ultralow loadings of 0.075 mgIr cm-2 and 0.075 mgPt cm-2 at anode and cathode, respectively. It demonstrates outstanding durability, sustaining water splitting for over 646 h with a degradation rate of only 5 μV h-1, outperforming state-of-the-art Ir-based catalysts. In situ X-ray absorption spectroscopy and density functional theory simulations reveal that the optimized charge redistribution between Ir and Pt, along with the IrPt core-IrPtOx shell structure, enhances performance. The Ir-O-Pt active sites enable a bi-nuclear mechanism for oxygen evolution reaction and a Volmer-Tafel mechanism for hydrogen evolution reaction, reducing kinetic barriers. Hierarchical porosity, abundant oxygen vacancies, and a high electrochemical surface area further improve electron and mass transfer. This work offers a cost-effective solution for green hydrogen production and advances the design of high-performance bifunctional catalysts for PEMWE.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"108 1","pages":"329"},"PeriodicalIF":26.6,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144622095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surpassing Shockley-Queisser Efficiency Limit in Photovoltaic Cells.","authors":"Zhigang Li,Bingqing Wei","doi":"10.1007/s40820-025-01844-8","DOIUrl":"https://doi.org/10.1007/s40820-025-01844-8","url":null,"abstract":"The Shockley-Queisser (S-Q) model sets a theoretical limit on the power conversion efficiency (PCE) of single-junction solar cells at around 33%. Recently, a PCE of 50%-60% was achieved for the first time in n-type single-junction Si solar cells by inhibiting light conversion to heat at low temperatures. Understanding these new observations opens tremendous opportunities for designing solar cells with even higher PCE to provide efficient and powerful energy sources for cryogenic devices and outer and deep space explorations.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"38 1","pages":"330"},"PeriodicalIF":26.6,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144622024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiying Zheng,Guozhen Liu,Xinhe Dong,Feifan Chen,Chao Wang,Hongbo Yu,Zhihua Zhang,Xu Pan
{"title":"Self-Regulated Bilateral Anchoring Enables Efficient Charge Transport Pathways for High-Performance Rigid and Flexible Perovskite Solar Cells.","authors":"Haiying Zheng,Guozhen Liu,Xinhe Dong,Feifan Chen,Chao Wang,Hongbo Yu,Zhihua Zhang,Xu Pan","doi":"10.1007/s40820-025-01846-6","DOIUrl":"https://doi.org/10.1007/s40820-025-01846-6","url":null,"abstract":"Interface modification has been demonstrated as an effective means to enhance the performance of perovskite solar cells. However, the effect depends on the anchoring mode and strength of the interfacial molecules, which determines whether long-term robust interface for carrier viaduct can be achieved under operational light illumination. Herein, we select squaric acid (SA) as the interfacial molecule between the perovskite and SnO2 layer and propose a self-regulated bilateral anchoring strategy. The unique four-membered ring conjugated structure and dicarboxylic acid groups facilitate stable hydrogen bonds and coordination bonds at both SnO2/SA and SA/PbI2 interfaces. The self-transforming property of SA enables the dynamic bilateral anchoring at the buried interface, ultimately releasing residual stress and constructing a stable interfacial molecular bridge. The results show that SA molecular bridge not only can effectively inhibit the generation of diverse charged defects but also serves as an effective electron transport pathway, resulting in improved power conversion efficiency (PCE) from 23.19 to 25.50% and excellent stability at the maximum power point. Additionally, the PCEs of the flexible and large-area (1 cm2) devices were increased to 24.92% and 24.01%, respectively, demonstrating the universal applicability of the bilateral anchoring to PSCs based on different substrates and larger area.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"26 1","pages":"328"},"PeriodicalIF":26.6,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144622094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonswelling Lubricative Nanocolloidal Hydrogel Resistant to Biodegradation.","authors":"Tiantian Ding,Chunxia Ren,Liyuan Meng,Guoyong Han,Yao Xue,Wenlong Song,Daowei Li,Hongchen Sun,Bai Yang,Yunfeng Li","doi":"10.1007/s40820-025-01830-0","DOIUrl":"https://doi.org/10.1007/s40820-025-01830-0","url":null,"abstract":"Hydrogels derived from biopolymers have numerous applications in bioengineering, drug delivery, wound healing, and wearable devices. Yet, their strong swelling and uncontrollable degradation stimulate the development of hydrogels that overcome these limitations. Here, we report nanocolloidal hydrogels formed from nanoparticles of methacryloyl-modified biopolymers that exhibit resistance to swelling and enzymatic degradation both in vitro and in vivo, along with exhibiting a broad-range of mechanical and lubrication properties, wear resistance and biocompatibility. The nonswelling behavior of nanocolloidal hydrogels takes origin in the resistance to swelling of their hydrophobic regions which are resulted from the nanophase of hydrophobic methacryloyl groups in the interior of the constituent nanoparticles. The developed approach to the preparation of nanocolloidal hydrogel with greatly enhanced properties will have applications in long-term drug delivery and cell culture, soft tissue augmentation, and implantable bioelectronics.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"12 1","pages":"327"},"PeriodicalIF":26.6,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144603918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinchang Wang,Alessandro Innocenti,Hang Wei,Yuanyuan Zhang,Jingsong Peng,Yuanting Qiao,Weifeng Huang,Jian Liu
{"title":"Scalable and Sustainable Chitosan/Carbon Nanotubes Composite Protective Layer for Dendrite-Free and Long-Cycling Aqueous Zinc-Metal Batteries.","authors":"Jinchang Wang,Alessandro Innocenti,Hang Wei,Yuanyuan Zhang,Jingsong Peng,Yuanting Qiao,Weifeng Huang,Jian Liu","doi":"10.1007/s40820-025-01837-7","DOIUrl":"https://doi.org/10.1007/s40820-025-01837-7","url":null,"abstract":"Rechargeable aqueous zinc (Zn)-metal batteries hold great promise for next-generation energy storage systems. However, their practical application is hindered by several challenges, including dendrite formation, corrosion, and the competing hydrogen evolution reaction. To address these issues, we designed and fabricated a composite protective layer for Zn anodes by integrating carbon nanotubes (CNTs) with chitosan through a simple and scalable scraping process. The CNTs ensure uniform electric field distribution due to their high electrical conductivity, while protonated chitosan regulates ion transport and suppresses dendrite formation at the anode interface. The chitosan/CNTs composite layer also facilitates smooth Zn2+ deposition, enhancing the stability and reversibility of the Zn anode. As a result, the chitosan/CNTs @ Zn anode demonstrates exceptional cycling stability, achieving over 3000 h of plating/stripping with minimal degradation. When paired with a V2O5 cathode, the composite-protected anode significantly improves the cycle stability and energy density of the full cell. Techno-economic analysis confirms that batteries incorporating the chitosan/CNTs protective layer outperform those with bare Zn anodes in terms of energy density and overall performance under optimized conditions. This work provides a scalable and sustainable strategy to overcome the critical challenges of aqueous Zn-metal batteries, paving the way for their practical application in next-generation energy storage systems.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"9 1","pages":"326"},"PeriodicalIF":26.6,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144578606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}