3D打印技术驱动的低温氢电化学转换装置的进展与创新

IF 36.3 1区 材料科学 Q1 Engineering
Min Wang, Xiuyue Wang, Enyang Sun, Zhenye Kang, Fan Gong, Bin Hou, Gaoqiang Yang, Mingbo Wu, Feng-Yuan Zhang
{"title":"3D打印技术驱动的低温氢电化学转换装置的进展与创新","authors":"Min Wang,&nbsp;Xiuyue Wang,&nbsp;Enyang Sun,&nbsp;Zhenye Kang,&nbsp;Fan Gong,&nbsp;Bin Hou,&nbsp;Gaoqiang Yang,&nbsp;Mingbo Wu,&nbsp;Feng-Yuan Zhang","doi":"10.1007/s40820-025-01907-w","DOIUrl":null,"url":null,"abstract":"<div><p>3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices—specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers—which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components. It begins with a concise introduction to the principles and classifications of mainstream 3D printing methods relevant to the hydrogen energy sector and proceeds to analyze their specific applications and performance impacts across different device architectures. Finally, the review identifies existing technical challenges and outlines future research directions to accelerate the integration of 3D printing in next-generation low-temperature hydrogen energy systems.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01907-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Advancements and Innovations in Low-Temperature Hydrogen Electrochemical Conversion Devices Driven by 3D Printing Technology\",\"authors\":\"Min Wang,&nbsp;Xiuyue Wang,&nbsp;Enyang Sun,&nbsp;Zhenye Kang,&nbsp;Fan Gong,&nbsp;Bin Hou,&nbsp;Gaoqiang Yang,&nbsp;Mingbo Wu,&nbsp;Feng-Yuan Zhang\",\"doi\":\"10.1007/s40820-025-01907-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices—specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers—which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components. It begins with a concise introduction to the principles and classifications of mainstream 3D printing methods relevant to the hydrogen energy sector and proceeds to analyze their specific applications and performance impacts across different device architectures. Finally, the review identifies existing technical challenges and outlines future research directions to accelerate the integration of 3D printing in next-generation low-temperature hydrogen energy systems.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01907-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01907-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01907-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

3D打印作为一种多功能的增材制造技术,提供了高度的设计灵活性、快速的原型制作、最小的材料浪费以及制造复杂的定制几何形状的能力。这些特性使其特别适合低温氢电化学转换设备,特别是质子交换膜燃料电池、质子交换膜电解槽、阴离子交换膜电解槽和碱性电解槽,这些设备需要结构精细的组件,如催化剂层、气体扩散层、电极、多孔传输层和双极板。这篇综述提供了一个重点和关键的总结,目前在应用3D打印技术到这些关键部件的进展。它首先简要介绍了与氢能源部门相关的主流3D打印方法的原理和分类,并继续分析其在不同设备架构中的具体应用和性能影响。最后,该综述确定了现有的技术挑战,并概述了未来的研究方向,以加速3D打印在下一代低温氢能系统中的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements and Innovations in Low-Temperature Hydrogen Electrochemical Conversion Devices Driven by 3D Printing Technology

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices—specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers—which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components. It begins with a concise introduction to the principles and classifications of mainstream 3D printing methods relevant to the hydrogen energy sector and proceeds to analyze their specific applications and performance impacts across different device architectures. Finally, the review identifies existing technical challenges and outlines future research directions to accelerate the integration of 3D printing in next-generation low-temperature hydrogen energy systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信