{"title":"Radiative Cooling Materials for Extreme Environmental Applications.","authors":"Jianing Xu,Wei Xie,Hexiang Han,Chengyu Xiao,Jing Li,Yifan Zhang,Shaowen Chen,Binyuan Zhao,Di Zhang,Han Zhou","doi":"10.1007/s40820-025-01835-9","DOIUrl":"https://doi.org/10.1007/s40820-025-01835-9","url":null,"abstract":"Radiative cooling is a passive thermal management strategy that leverages the natural ability of materials to dissipate heat through infrared radiation. It has significant implications for energy efficiency, climate adaptation, and sustainable technology development, with applications in personal thermal management, building temperature regulation, and aerospace engineering. However, radiative cooling performance is susceptible to environmental aging and special environmental conditions, limiting its applicability in extreme environments. Herein, a critical review of extreme environmental radiative cooling is presented, focusing on enhancing environmental durability and cooling efficiency. This review first introduces the design principles of heat exchange channels, which are tailored based on the thermal flow equilibrium to optimize radiative cooling capacity in various extreme environments. Subsequently, recent advancements in radiative cooling materials and micro-nano structures that align with these principles are systematically discussed, with a focus on their implementation in terrestrial dwelling environments, terrestrial extreme environments, aeronautical environments, and space environments. Moreover, this review evaluates the cooling effects and anti-environmental abilities of extreme radiative cooling devices. Lastly, key challenges hindering the development of radiative cooling devices for extreme environmental applications are outlined, and potential strategies to overcome these limitations are proposed, aiming to prompt their future commercialization.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"67 1","pages":"324"},"PeriodicalIF":26.6,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A LiF-Pie-Structured Interphase for Silicon Anodes.","authors":"Weiping Li,Shiwei Xu,Cong Zhong,Qiu Fang,Suting Weng,Yinzi Ma,Bo Wang,Yejing Li,Zhaoxiang Wang,Xuefeng Wang","doi":"10.1007/s40820-025-01832-y","DOIUrl":"https://doi.org/10.1007/s40820-025-01832-y","url":null,"abstract":"Silicon (Si) is a promising anode material for rechargeable batteries due to its high theoretical capacity and abundance, but its practical application is hindered by the continuous growth of porous solid-electrolyte interphase (SEI), leading to capacity fade. Herein, a LiF-Pie structured SEI is proposed, with LiF nanodomains encapsulated in the inner layer of the organic cross-linking silane matrix. A series of advanced techniques such as cryogenic electron microscopy, time-of-flight secondary ion mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have provided detailed insights into the formation mechanism, nanostructure, and chemical composition of the interface. With such SEI, the capacity retention of LiCoO2||Si is significantly improved from 49.6% to 88.9% after 300 cycles at 100 mA g-1. These findings provide a desirable interfacial design principle with enhanced (electro) chemical and mechanical stability, which are crucial for sustaining Si anode functionality, thereby significantly advancing the reliability and practical application of Si-based anodes.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"42 1","pages":"322"},"PeriodicalIF":26.6,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyang Gan,Yujie Huang,Ningyun Hong,Yinghao Zhang,Bo Xiong,Zhi Zheng,Zidong He,Shengrui Gao,Wentao Deng,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji
{"title":"Comprehensive Understanding of Closed Pores in Hard Carbon Anode for High-Energy Sodium-Ion Batteries.","authors":"Siyang Gan,Yujie Huang,Ningyun Hong,Yinghao Zhang,Bo Xiong,Zhi Zheng,Zidong He,Shengrui Gao,Wentao Deng,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji","doi":"10.1007/s40820-025-01833-x","DOIUrl":"https://doi.org/10.1007/s40820-025-01833-x","url":null,"abstract":"Hard carbon (HC) is considered the most promising anode material for sodium-ion batteries (SIBs) due to its high cost-effectiveness and outstanding overall performance. However, the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure-performance relationship, which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores. An irrational construction methodology of closed pores inevitably results in diminished plateau capacity, which severely restricts the practical application of HC in high-energy-density scenarios. This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores, offering critical insights into their structural characteristics and formation pathways. Subsequently, by correlating lattice parameters with defect configurations, the structure-performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established. Furthermore, pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC. It is imperative to emphasize that adopting a molecular-level perspective, coupled with a synergistic kinetic/thermodynamic approach, is critical for understanding and controlling the transformation process from open pores to closed pores. These innovative perspectives are strategically designed to accelerate the commercialization of HC, thereby catalyzing the sustainable and high-efficiency development of SIBs.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"89 1","pages":"325"},"PeriodicalIF":26.6,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Nanomedicines for Treating Refractory Inflammation-Related Diseases.","authors":"Xiuxiu Wang,Xinran Song,Wei Feng,Meiqi Chang,Jishun Yang,Yu Chen","doi":"10.1007/s40820-025-01829-7","DOIUrl":"https://doi.org/10.1007/s40820-025-01829-7","url":null,"abstract":"This review examines inflammation as a physiological defense mechanism against infectious agents, physical trauma, reactive oxygen species (ROS), and metabolic stress, which, under dysregulated conditions, may progress into chronic diseases. Nanomedicine, which integrates nanotechnology with medicine, suppresses inflammatory signaling pathways and overexpressed pro-inflammatory cytokines, such as ROS, to address inflammation-related pathologies. Current advances in nanomaterial design and synthesis strategies are systematically analyzed, with parallel discussions on toxicity mechanisms, influencing factors, and evaluation methods that are critical for clinical translation. Applications of functional nanomaterials are highlighted in the context of refractory inflammatory conditions, including wound healing, gastrointestinal disorders, and immune, neurological, or circulatory diseases, along with targeted delivery strategies. Persistent challenges in nanomedicine development, such as biocompatibility optimization, precise biodistribution control, and standardized toxicity assessment, are critically assessed. By bridging material innovation with therapeutic efficacy, this review establishes a framework for advancing nanomedicine to improve treatment outcomes while addressing translational barriers.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"685 1","pages":"323"},"PeriodicalIF":26.6,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Designing a Sulfur Vacancy Redox Disruptor for Photothermoelectric and Cascade-Catalytic-Driven Cuproptosis-Ferroptosis-Apoptosis Therapy.","authors":"Mengshu Xu, Jingwei Liu, Lili Feng, Jiahe Hu, Wei Guo, Huiming Lin, Bin Liu, Yanlin Zhu, Shuyao Li, Elyor Berdimurodov, Avez Sharipov, Piaoping Yang","doi":"10.1007/s40820-025-01828-8","DOIUrl":"10.1007/s40820-025-01828-8","url":null,"abstract":"<p><p>The therapeutic efficacy of cuproptosis, ferroptosis, and apoptosis is hindered by inadequate intracellular copper and iron levels, hypoxia, and elevated glutathione (GSH) expression in tumor cells. Thermoelectric technology is an emerging frontier in medical therapy that aims to achieve efficient thermal and electrical transport characteristics within a narrow thermal range for biological systems. Here, we systematically constructed biodegradable Cu<sub>2</sub>MnS<sub>3-x</sub>-PEG/glucose oxidase (MCPG) with sulfur vacancies (S<sub>V</sub>) using photothermoelectric catalysis (PTEC), photothermal-enhanced enzyme catalysis, and starvation therapy. This triggers GSH consumption and disrupts intracellular redox homeostasis, leading to immunogenic cell death. Under 1064 nm laser irradiation, MCPG enriched with S<sub>V</sub>, owing to doping, generates a local temperature gradient that activates PTEC and produces toxic reactive oxygen species (ROS). Hydroxyl radicals and oxygen are generated through peroxide and catalase-like processes. Increased oxygen levels alleviate tumor hypoxia, whereas hydrogen peroxide production from glycometabolism provides sufficient ROS for a cascade catalytic reaction, establishing a self-reinforcing positive mechanism. Density functional theory calculations demonstrated that vacancy defects effectively enhanced enzyme catalytic activity. Multimodal imaging-guided synergistic therapy not only damages tumor cells, but also elicits an antitumor immune response to inhibit tumor metastasis. This study offers novel insights into the cuproptosis/ferroptosis/apoptosis pathways of Cu-based PTEC nanozymes.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"321"},"PeriodicalIF":26.6,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144558769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Ao, Long Jin, Shenglong Wang, Bolin Lan, Guo Tian, Tianpei Xu, Longchao Huang, Zihan Wang, Yue Sun, Tao Yang, Weili Deng, Fan Yang, Weiqing Yang
{"title":"Dual Structure Reinforces Interfacial Polarized MXene/PVDF-TrFE Piezoelectric Nanocomposite for Pressure Monitoring.","authors":"Yong Ao, Long Jin, Shenglong Wang, Bolin Lan, Guo Tian, Tianpei Xu, Longchao Huang, Zihan Wang, Yue Sun, Tao Yang, Weili Deng, Fan Yang, Weiqing Yang","doi":"10.1007/s40820-025-01839-5","DOIUrl":"10.1007/s40820-025-01839-5","url":null,"abstract":"<p><p>The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement. However, there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena and stochastic interface disorder that plague the improvement of piezoelectric performance. Here, we report a dual structure reinforced MXene/PVDF-TrFE piezoelectric composite, whose piezoelectricity is enhanced under the coupling effect of interfacial polarization and structural design. Synergistically, molecular dynamics simulations, density functional theory calculations and experimental validation revealed the details of interfacial interactions, which promotes the net spontaneous polarization of PVDF-TrFE from the 0.56 to 31.41 Debye. The oriented MXene distribution and porous structure not only tripled the piezoelectric response but also achieved an eightfold increase in sensitivity within the low-pressure region, along with demonstrating cyclic stability exceeding 20,000 cycles. The properties reinforcement originating from dual structure is elucidated through the finite element simulation and experimental validation. Attributed to the excellent piezoelectric response and deep learning algorithm, the sensor can effectively recognize the signals of artery pulse and finger flexion. Finally, a 3 × 3 sensor array is fabricated to monitor the pressure distribution wirelessly. This study provides an innovative methodology for reinforcing interfacial polarized piezoelectric materials and insight into structural designs.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"320"},"PeriodicalIF":26.6,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144558770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial Intelligence-Assisted Conductive Hydrogel Dressings for Refractory Wounds Monitoring.","authors":"Yumo She,He Liu,Hailiang Yuan,Yiqi Li,Xunjie Liu,Ruonan Liu,Mengyao Wang,Tingting Wang,Lina Wang,Meihan Liu,Wenyu Wan,Ye Tian,Kai Zhang","doi":"10.1007/s40820-025-01834-w","DOIUrl":"https://doi.org/10.1007/s40820-025-01834-w","url":null,"abstract":"Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings. However, certain challenges, including surgical difficulty, lengthy recovery times, and a high recurrence rate persist. Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements. Therefore, this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing, the materials selection of conductive hydrogel dressings used for wound monitoring, focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals, proving invaluable for non-invasive, real-time evaluation of wound condition to encourage wound healing. Notably, the research of artificial intelligence (AI) model based on sensor derived data to predict the wound healing state, AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing. Finally, refractory wounds including pressure ulcers, diabetes ulcers and articular wounds, and the corresponding wound monitoring and healing process are discussed in detail. This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":"319"},"PeriodicalIF":26.6,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144547867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scalable Fabrication of Methylammonium-Free Wide-Bandgap Perovskite Solar Cells by Blade Coating in Ambient Air.","authors":"Jianbo Liu,Meng Zhang,Xiaoran Sun,Linhu Xiang,Xiangyu Yang,Xin Hu,Zhicheng Wang,Tian Hou,Jinzhao Qin,Yuelong Huang,Mojtaba Abdi-Jalebi,Xiaojing Hao","doi":"10.1007/s40820-025-01838-6","DOIUrl":"https://doi.org/10.1007/s40820-025-01838-6","url":null,"abstract":"Scalable fabrication of efficient wide-bandgap (WBG) perovskite solar cells (PSCs) is crucial to realize the full commercial potential of tandem solar cells. However, there are challenges in fabricating efficient methylammonium-free (MA-free) WBG PSCs by blade coating, especially its phase separation and films stability. In this work, an MA-free WBG perovskite ink is developed for preparing FA0.8Cs0.2Pb(I0.75Br0.25)3 films by blade coating in ambient air. Among various A-site iodides, RbI is found to be the most effective in suppressing the precipitation of PbI2 induced by Pb(SCN)2 while keeping the enlarged grains. The distribution of Rb suggested that the Rb ions are kept isolated with the perovskite grains during the crystallization and Ostwald ripening processes, which contributes to the formation of the large-grain WBG perovskite film with minimum non-radiative recombination. As a result, a power conversion efficiency (PCE) of 23.0% was achieved on small-area WBG PSCs, while mini-modules with an aperture area of 10.5 cm2 exhibited a PCE of 20.2%, among the highest reported for solar cells prepared with WBG perovskites via blade coating. This work presents a scalable and reproducible fabrication strategy for stable MA-free WBG PSCs under ambient conditions, advancing their path toward commercialization.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"27 1","pages":"318"},"PeriodicalIF":26.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144533447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenyu Zhou,Zixuan Zhang,Pengfei Li,Zhiyuan Guan,Yuchen Li,Xiaoxu Li,Shan Xu,Jianhui Zhao,Xiaobing Yan
{"title":"Low Energy Consumption Photoelectric Memristors with Multi-Level Linear Conductance Modulation in Artificial Visual Systems Application.","authors":"Zhenyu Zhou,Zixuan Zhang,Pengfei Li,Zhiyuan Guan,Yuchen Li,Xiaoxu Li,Shan Xu,Jianhui Zhao,Xiaobing Yan","doi":"10.1007/s40820-025-01816-y","DOIUrl":"https://doi.org/10.1007/s40820-025-01816-y","url":null,"abstract":"Optical synapses have an ability to perceive and remember visual information, making them expected to provide more intelligent and efficient visual solutions for humans. As a new type of artificial visual sensory devices, photoelectric memristors can fully simulate synaptic performance and have great prospects in the development of biological vision. However, due to the urgent problems of nonlinear conductance and high-energy consumption, its further application in high-precision control scenarios and integration is hindered. In this work, we report an optoelectronic memristor with a structure of TiN/CeO2/ZnO/ITO/Mica, which can achieve minimal energy consumption (187 pJ) at a single pulse (0.5 V, 5 ms). Under the stimulation of continuous pulses, linearity can be achieved up to 99.6%. In addition, the device has a variety of synaptic functions under the combined action of photoelectric, which can be used for advanced vision. By utilizing its typical long-term memory characteristics, we achieved image recognition and long-term memory in a 3 × 3 synaptic array and further achieved female facial feature extraction behavior with an activation rate of over 92%. Moreover, we also use the linear response characteristic of the device to design and implement the night meeting behavior of autonomous vehicles based on the hardware platform. This work highlights the potential of photoelectric memristors for advancing neuromorphic vision systems, offering a new direction for bionic eyes and visual automation technology.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"47 1","pages":"317"},"PeriodicalIF":26.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144533448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seong Hyun Park, Young Je Park, Seungsoo Jang, Pilyoung Lee, Soobin Yoon, Young-June Park, Chi-Young Jung, Kang Taek Lee
{"title":"Triple-Layer Porous Transport Layers with Ultra-High Porosity for Enhanced Oxygen Transport and Catalyst Utilization in Water Electrolysis.","authors":"Seong Hyun Park, Young Je Park, Seungsoo Jang, Pilyoung Lee, Soobin Yoon, Young-June Park, Chi-Young Jung, Kang Taek Lee","doi":"10.1007/s40820-025-01831-z","DOIUrl":"10.1007/s40820-025-01831-z","url":null,"abstract":"<p><p>The commercialization of proton exchange membrane water electrolysis (PEMWE) for green hydrogen production hinges on the development of low-cost, high-performance titanium porous transport layers (PTLs). This study introduces a triple-layer Ti-PTL with a graded porous structure and a 75% ultra-high porosity backing layer, fabricated through tape casting and roll calendering. This triple-layer PTL, composed of a microporous layer, an interlayer, and a highly porous backing layer, enhances catalyst utilization, mechanical integrity, and mass transport. Digital twin technology using X-ray revealed increased contact area and triple-phase boundary at the interface with the catalyst layer, significantly improving oxygen evolution reaction kinetics. Numerical simulations demonstrated that the strategically designed porous structure of the triple-layer PTL facilitates efficient oxygen transport, mitigates oxygen accumulation, and improves reactant accessibility. Electrochemical evaluations showed improved performance, achieving 127 mV reduction in voltage at 2 A cm<sup>-2</sup> compared to a commercial PTL, highlighting its potential to enhance PEMWE efficiency and cost-effectiveness.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"316"},"PeriodicalIF":26.6,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144525922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}