Boron-Insertion-Induced Lattice Engineering of Rh Nanocrystals Toward Enhanced Electrocatalytic Conversion of Nitric Oxide to Ammonia

IF 36.3 1区 材料科学 Q1 Engineering
Peng Han, Xiangou Xu, Weiwei Chen, Long Zheng, Chen Ma, Gang Wang, Lei Xu, Ping Gu, Wenbin Wang, Qiyuan He, Zhiyuan Zeng, Jinlan Wang, Dong Su, Chongyi Ling, Zhengxiang Gu, Ye Chen
{"title":"Boron-Insertion-Induced Lattice Engineering of Rh Nanocrystals Toward Enhanced Electrocatalytic Conversion of Nitric Oxide to Ammonia","authors":"Peng Han,&nbsp;Xiangou Xu,&nbsp;Weiwei Chen,&nbsp;Long Zheng,&nbsp;Chen Ma,&nbsp;Gang Wang,&nbsp;Lei Xu,&nbsp;Ping Gu,&nbsp;Wenbin Wang,&nbsp;Qiyuan He,&nbsp;Zhiyuan Zeng,&nbsp;Jinlan Wang,&nbsp;Dong Su,&nbsp;Chongyi Ling,&nbsp;Zhengxiang Gu,&nbsp;Ye Chen","doi":"10.1007/s40820-025-01919-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>Phase regulation of B-inserted rhodium (Rh) nanocrystals is achieved using a facile wet-chemical approach.</p>\n </li>\n <li>\n <p>The B-inserted Rh nanocatalysts exhibit phase-dependent behaviors in electrocatalytic nitric oxide (NO) reduction reaction.</p>\n </li>\n <li>\n <p>The hexagonal close-packed RhB nanocatalysts demonstrate superior electrocatalytic activity in NH<sub>3</sub> production with a maximum NH<sub>3</sub> yield rate of 629.5 µmol h<sup>−1</sup> cm<sup>−2</sup> and FE<sub>NH3</sub> of 92.1%.</p>\n </li>\n <li>\n <p>Theoretical simulations reveal possible origin of the excellent electrocatalytic activity, which could be attributed to the d-band center upshift, enhanced NO adsorption/activation, and reduced energy barrier of rate-determining step.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01919-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01919-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • Phase regulation of B-inserted rhodium (Rh) nanocrystals is achieved using a facile wet-chemical approach.

  • The B-inserted Rh nanocatalysts exhibit phase-dependent behaviors in electrocatalytic nitric oxide (NO) reduction reaction.

  • The hexagonal close-packed RhB nanocatalysts demonstrate superior electrocatalytic activity in NH3 production with a maximum NH3 yield rate of 629.5 µmol h−1 cm−2 and FENH3 of 92.1%.

  • Theoretical simulations reveal possible origin of the excellent electrocatalytic activity, which could be attributed to the d-band center upshift, enhanced NO adsorption/activation, and reduced energy barrier of rate-determining step.

硼插入诱导的Rh纳米晶体晶格工程用于增强一氧化氮转化为氨的电催化。
电催化氧化氮(NO)还原反应(NORR)可以同时实现绿色氨(NH3)的合成和有害NO的去除,是一种有前途的可持续发展的工艺。然而,由于缺乏高效的电催化剂,目前的NORR性能与实际需要相差甚远。通过相控制来设计金属基纳米材料的晶格已经成为一种有效的策略来调节其固有的电催化性能。本研究通过简单的湿化学方法,实现了硼(B)插入诱导的铑(Rh)纳米晶体的相调节,获得了非晶Rh4B纳米粒子(NPs)和六方密排RhB纳米粒子(hcp)。hcp RhB NPs具有较高的法拉第效率(92.1±1.2%)和NH3产率(629.5±11.0µmol h-1 cm-2),远远优于大多数报道的NORR纳米催化剂。原位光谱电化学分析和密度泛函理论模拟表明,hcp RhB NPs优异的电催化性能主要归因于d波段中心的上移、NO吸附/活化谱的增强和速率决定步骤的能量势垒的大幅降低。以hcp RhB NPs为阴极组装了示范性Zn-NO电池,其峰值功率密度为4.33 mW cm-2,同时实现了NO去除、NH3合成和电力输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信