高性能全固态钠电池中Na+配位化学的静电调控

IF 36.3 1区 材料科学 Q1 Engineering
Penghui Song, Suli Chen, Junhong Guo, Junchen Wu, Qiongqiong Lu, Haijiao Xie, Qingsong Wang, Tianxi Liu
{"title":"高性能全固态钠电池中Na+配位化学的静电调控","authors":"Penghui Song,&nbsp;Suli Chen,&nbsp;Junhong Guo,&nbsp;Junchen Wu,&nbsp;Qiongqiong Lu,&nbsp;Haijiao Xie,&nbsp;Qingsong Wang,&nbsp;Tianxi Liu","doi":"10.1007/s40820-025-01910-1","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>An electrostatic engineering strategy is proposed to regulate the Na<sup>+</sup> coordinated structure by employing a fluorinated metal–organic framework as an electron-rich model.</p>\n </li>\n <li>\n <p>The abundant electron-rich F sites can accelerate Na-salt disassociation while forcing anions into Na<sup>+</sup> coordination structure though electrostatic effect to weaken the Na–O coordination, thus promoting rapid Na<sup>+</sup> transport.</p>\n </li>\n <li>\n <p>Anion-rich weak Na<sup>+</sup> solvation structure is achieved and contributes to a highly stable inorganic-rich solid–electrolyte interphase, significantly enhances the interfacial stability toward Na anode.</p>\n </li>\n <li>\n <p>Impressively, Na/Na symmetric cell delivered stable Na plating/stripping over 2500 h, and the assembled all-solid-state sodium metal batteries demonstrated stable performance of over 2000 cycles under high rate of 2 C with capacity retention nearly 100%.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01910-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrostatic Regulation of Na+ Coordination Chemistry for High-Performance All-Solid-State Sodium Batteries\",\"authors\":\"Penghui Song,&nbsp;Suli Chen,&nbsp;Junhong Guo,&nbsp;Junchen Wu,&nbsp;Qiongqiong Lu,&nbsp;Haijiao Xie,&nbsp;Qingsong Wang,&nbsp;Tianxi Liu\",\"doi\":\"10.1007/s40820-025-01910-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>An electrostatic engineering strategy is proposed to regulate the Na<sup>+</sup> coordinated structure by employing a fluorinated metal–organic framework as an electron-rich model.</p>\\n </li>\\n <li>\\n <p>The abundant electron-rich F sites can accelerate Na-salt disassociation while forcing anions into Na<sup>+</sup> coordination structure though electrostatic effect to weaken the Na–O coordination, thus promoting rapid Na<sup>+</sup> transport.</p>\\n </li>\\n <li>\\n <p>Anion-rich weak Na<sup>+</sup> solvation structure is achieved and contributes to a highly stable inorganic-rich solid–electrolyte interphase, significantly enhances the interfacial stability toward Na anode.</p>\\n </li>\\n <li>\\n <p>Impressively, Na/Na symmetric cell delivered stable Na plating/stripping over 2500 h, and the assembled all-solid-state sodium metal batteries demonstrated stable performance of over 2000 cycles under high rate of 2 C with capacity retention nearly 100%.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01910-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01910-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01910-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种静电工程策略,利用氟化金属-有机骨架作为富电子模型来调节Na+配位结构。丰富的富电子F位可以加速Na-盐的解离,同时通过静电效应迫使阴离子进入Na+配位结构,削弱Na- o配位,从而促进Na+的快速输运。实现了富阴离子的弱Na+溶剂化结构,形成了高度稳定的富无机固体电解质界面相,显著增强了界面对Na阳极的稳定性。令人印象深刻的是,Na/Na对称电池在2500 h内实现了稳定的镀/剥离,组装的全固态金属钠电池在高2c倍率下表现出2000多次循环的稳定性能,容量保持率接近100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrostatic Regulation of Na+ Coordination Chemistry for High-Performance All-Solid-State Sodium Batteries

Highlights

  • An electrostatic engineering strategy is proposed to regulate the Na+ coordinated structure by employing a fluorinated metal–organic framework as an electron-rich model.

  • The abundant electron-rich F sites can accelerate Na-salt disassociation while forcing anions into Na+ coordination structure though electrostatic effect to weaken the Na–O coordination, thus promoting rapid Na+ transport.

  • Anion-rich weak Na+ solvation structure is achieved and contributes to a highly stable inorganic-rich solid–electrolyte interphase, significantly enhances the interfacial stability toward Na anode.

  • Impressively, Na/Na symmetric cell delivered stable Na plating/stripping over 2500 h, and the assembled all-solid-state sodium metal batteries demonstrated stable performance of over 2000 cycles under high rate of 2 C with capacity retention nearly 100%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信