Mengjie Wang, Chen Chen, Yuhang Zhang, Yanan Ma, Li Xu, Dan-Dan Wu, Bowen Gao, Aoyun Song, Li Wen, Yongfa Cheng, Siliang Wang, Yang Yue
{"title":"Flexible Monolithic 3D-Integrated Self-Powered Tactile Sensing Array Based on Holey MXene Paste","authors":"Mengjie Wang, Chen Chen, Yuhang Zhang, Yanan Ma, Li Xu, Dan-Dan Wu, Bowen Gao, Aoyun Song, Li Wen, Yongfa Cheng, Siliang Wang, Yang Yue","doi":"10.1007/s40820-025-01924-9","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible electronics face critical challenges in achieving monolithic three-dimensional (3D) integration, including material compatibility, structural stability, and scalable fabrication methods. Inspired by the tactile sensing mechanism of the human skin, we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste, where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor. The in-plane mesopores of MXene significantly improve ion accessibility, mitigate the self-stacking of nanosheets, and allow the holey MXene to multifunctionally act as a sensing material, an active electrode, and a conductive interconnect, thus drastically reducing the interface mismatch and enhancing the mechanical robustness. Furthermore, we fabricate a large-scale device using a blade-coating and stamping method, which demonstrates excellent mechanical flexibility, low-power consumption, rapid response, and stable long-term operation. As a proof-of-concept application, we integrate our sensing array into a smart access control system, leveraging deep learning to accurately identify users based on their unique pressing behaviors. This study provides a promising approach for designing highly integrated, intelligent, and flexible electronic systems for advanced human–computer interactions and personalized electronics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01924-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01924-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible electronics face critical challenges in achieving monolithic three-dimensional (3D) integration, including material compatibility, structural stability, and scalable fabrication methods. Inspired by the tactile sensing mechanism of the human skin, we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste, where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor. The in-plane mesopores of MXene significantly improve ion accessibility, mitigate the self-stacking of nanosheets, and allow the holey MXene to multifunctionally act as a sensing material, an active electrode, and a conductive interconnect, thus drastically reducing the interface mismatch and enhancing the mechanical robustness. Furthermore, we fabricate a large-scale device using a blade-coating and stamping method, which demonstrates excellent mechanical flexibility, low-power consumption, rapid response, and stable long-term operation. As a proof-of-concept application, we integrate our sensing array into a smart access control system, leveraging deep learning to accurately identify users based on their unique pressing behaviors. This study provides a promising approach for designing highly integrated, intelligent, and flexible electronic systems for advanced human–computer interactions and personalized electronics.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.