Kusum Sharma, Kousik Bhunia, Subhajit Chatterjee, Muthukumar Perumalsamy, Anandhan Ayyappan Saj, Theophilus Bhatti, Yung-Cheol Byun, Sang-Jae Kim
{"title":"Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring","authors":"Kusum Sharma, Kousik Bhunia, Subhajit Chatterjee, Muthukumar Perumalsamy, Anandhan Ayyappan Saj, Theophilus Bhatti, Yung-Cheol Byun, Sang-Jae Kim","doi":"10.1007/s40820-025-01912-z","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>We rationally designed a robust, biocompatible CoN CNT/PVA/GLE organogel with self-healing, anti-freezing, and self-adhesive properties for wearable sensing applications.</p>\n </li>\n <li>\n <p>Incorporation of CoN CNT enables high-performance, stable pressure sensing for up to one month, with a sensitivity of S = 5.75 kPa<sup>-1</sup>, r<sup>2</sup> = 0.978 in the detection range 0-20 kPa, with robust operation under high humidity and extreme temperatures (−20 to 45 °C).</p>\n </li>\n <li>\n <p>It accurately detects English alphabets, achieving 98% recognition accuracy using deep learning models.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01912-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01912-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Highlights
We rationally designed a robust, biocompatible CoN CNT/PVA/GLE organogel with self-healing, anti-freezing, and self-adhesive properties for wearable sensing applications.
Incorporation of CoN CNT enables high-performance, stable pressure sensing for up to one month, with a sensitivity of S = 5.75 kPa-1, r2 = 0.978 in the detection range 0-20 kPa, with robust operation under high humidity and extreme temperatures (−20 to 45 °C).
It accurately detects English alphabets, achieving 98% recognition accuracy using deep learning models.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.