Low-Temperature Electrolytes for Lithium-Ion Batteries: Current Challenges, Development, and Perspectives

IF 36.3 1区 材料科学 Q1 Engineering
Yang Zhao, Limin Geng, Weijia Meng, Jiaye Ye
{"title":"Low-Temperature Electrolytes for Lithium-Ion Batteries: Current Challenges, Development, and Perspectives","authors":"Yang Zhao,&nbsp;Limin Geng,&nbsp;Weijia Meng,&nbsp;Jiaye Ye","doi":"10.1007/s40820-025-01914-x","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs), while dominant in energy storage due to high energy density and cycling stability, suffer from severe capacity decay, rate capability degradation, and lithium dendrite formation under low-temperature (LT) operation. Therefore, a more comprehensive and systematic understanding of LIB behavior at LT is urgently required. This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs. The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges: insufficient ionic conductivity under cryogenic conditions, kinetically hindered charge transfer processes, Li⁺ transport limitations across the solid-electrolyte interphase (SEI), and uncontrolled lithium dendrite growth. The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics, solvent matrix optimization through dielectric constant and viscosity regulation, interfacial engineering additives for constructing low-impedance SEI layers, and gel-polymer composite electrolyte systems. Notably, particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure–property relationships. These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01914-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01914-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs), while dominant in energy storage due to high energy density and cycling stability, suffer from severe capacity decay, rate capability degradation, and lithium dendrite formation under low-temperature (LT) operation. Therefore, a more comprehensive and systematic understanding of LIB behavior at LT is urgently required. This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs. The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges: insufficient ionic conductivity under cryogenic conditions, kinetically hindered charge transfer processes, Li⁺ transport limitations across the solid-electrolyte interphase (SEI), and uncontrolled lithium dendrite growth. The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics, solvent matrix optimization through dielectric constant and viscosity regulation, interfacial engineering additives for constructing low-impedance SEI layers, and gel-polymer composite electrolyte systems. Notably, particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure–property relationships. These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.

锂离子电池的低温电解质:当前的挑战、发展和前景。
锂离子电池因其高能量密度和循环稳定性在储能领域占据主导地位,但在低温下存在严重的容量衰减、速率性能退化和锂枝晶形成等问题。因此,迫切需要更全面和系统地了解LIB在LT中的行为。本文全面综述了旨在提高锂离子电池低温运行能力的电解质工程策略的最新进展。该研究通过对四个主要挑战的基本分析,系统地检查了关键的性能限制机制:低温条件下离子电导率不足,动力学阻碍电荷转移过程,Li +在固体电解质间相(SEI)上的传输限制,以及不受控制的锂枝晶生长。这项工作详细阐述了创新的优化方法,包括具有定制解离特性的锂盐分子设计,通过介电常数和粘度调节来优化溶剂基质,用于构建低阻抗SEI层的界面工程添加剂,以及凝胶-聚合物复合电解质系统。值得注意的是,特别强调的是新兴的机器学习引导的电解质配方策略,该策略能够对成分组合进行高通量虚拟筛选,并预测结构-性质关系。这些人工智能辅助的理性设计框架通过先进的数据驱动方法建立定量的成分-性能相关性,为加速下一代LT电解质的开发展示了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信