{"title":"Transient drift velocity of photoexcited electrons in CdTe","authors":"Dongfeng Liu","doi":"10.1007/s10825-024-02165-6","DOIUrl":"10.1007/s10825-024-02165-6","url":null,"abstract":"<div><p>The relaxation dynamics of photoexcited carriers of CdTe is vital toward its applications in high-performance optoelectrical devices. In this paper, the dependences of transient drift velocities of photoexcited electrons in bulk CdTe on photoexcitation conditions such as the pump intensity and photoexcitation wavelengths, temperature and externally applied electric field, are systematically investigated by the ensemble Monte Carlo method (EMC). The main scattering mechanisms including nonelastic deformation potential acoustic phonon, deformation potential optical phonon scattering, ionized impurity (II) scattering, and polar optical phonon scattering events, the effects of nonequilibrium phonons, and the Pauli exclusion principle are considered in EMC. The velocity overshoot phenomenon is only found to arise at a low temperature (100 K), with a longer photoexcitation wavelength (640 nm) and under a higher electric field (> 50 kV/cm). The effect of nonequilibrium phonons on electron drift velocity is found to be dependent on the photoexcited carrier density. Our findings may be useful for designing novel CdTe-based optoelectronic devices, which employ nonequilibrium photoexcited carriers to improve the performance.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"498 - 506"},"PeriodicalIF":2.2,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Riaz, Bakhat Ali, Syed Mansoor Ali, M. Ijaz Khan, M. Sana Ullah Sahar, Mubeen Shahid, Manawwer Alam
{"title":"Stress-induced transformation on the cubic perovskite RbTaO3 for high-temperature applications: a DFT approach","authors":"Muhammad Riaz, Bakhat Ali, Syed Mansoor Ali, M. Ijaz Khan, M. Sana Ullah Sahar, Mubeen Shahid, Manawwer Alam","doi":"10.1007/s10825-024-02166-5","DOIUrl":"10.1007/s10825-024-02166-5","url":null,"abstract":"<div><p>Oxide perovskites (ABO<sub>3</sub>) have fascinated researchers due to their potential applications in diverse fields because of their flexible chemistry and favourable characteristics including tunable band gap, high carrier mobility, and excellent optical properties. Here, a DFT-based study was conducted on RbTaO<sub>3,</sub> delved into the material behaviour under varying stress ranging from 0 to 100 GPa, emphasizing its potential for advanced applications. Key findings include a reduction in the lattice parameter from 4.2084 to 3.8149 Å, and volume from 74.5334 to 55.5200 Å<sup>3</sup>, along with a band gap narrowing from 1.574 to 1.490 eV. Additionally, DOS analysis gives an understanding of the electronic transitions involving Rb-5<i>s</i>, Ta-5<i>d</i>, and O-2<i>p</i> states. Optically, the material showed high absorption, conductivity, and lower loss function. The mechanical stability is confirmed by Born stability criteria through elastic constants (<i>C</i><sub>11</sub>, <i>C</i><sub>12</sub>, and <i>C</i><sub>44</sub>). Further assessments using Poisson’s ratio, Pugh’s ratio (<i>B</i>/<i>G</i>), Frantsevich ratio, Cauchy pressure (<i>C</i><sub>P</sub>), and anisotropic factor underscore its ductility and define anisotropic behaviour. The upward trend in phonon dispersion denotes its thermal resilience. From a thermodynamic perspective, the studied material exhibits superior high-temperature stability under high-stress levels, as confirmed by Debye temperature (<i>θ</i><sub>D</sub>). Furthermore, an inverse association of enthalpy and total entropy with free energy was observed. Comprehensive analysis of RbTaO<sub>3</sub> under varying stress provides valuable insights and highlights its potential in electronics, advanced materials engineering, and high-temperature applications.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"483 - 497"},"PeriodicalIF":2.2,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ibrar Ali Shah, Muhammad Imran, Niaz Ahmad Niaz, Fayyaz Hussain, Umbreen Rasheed, Manawwer Alam, Syed Mansoor Ali, R. M. A. Khalil, Muhammad Shoaib
{"title":"Correction: Revealing structural, elastic, optoelectronic and thermoelectric properties of lead-free Ba2XTiO6 (X = Hf, Ce, Te) double perovskite for solar cells applications","authors":"Ibrar Ali Shah, Muhammad Imran, Niaz Ahmad Niaz, Fayyaz Hussain, Umbreen Rasheed, Manawwer Alam, Syed Mansoor Ali, R. M. A. Khalil, Muhammad Shoaib","doi":"10.1007/s10825-024-02161-w","DOIUrl":"10.1007/s10825-024-02161-w","url":null,"abstract":"<div><p>The non-toxic nature, low cost, and excellent optical properties make oxide-based perovskites potential candidates for solar cell applications. The full potential linearized augmented plane wave approach is applied to explore the structural, electronic, optical, and thermoelectric properties of Ba<sub>2</sub>XTiO<sub>6</sub> (X = Hf, Ce, and Te) for solar cell applications. As demonstrated by an elastic study, Ba<sub>2</sub>HfTiO<sub>6</sub> is brittle, while Ba<sub>2</sub>CeTiO<sub>6</sub> and Ba<sub>2</sub>TeTiO<sub>6</sub> are ductile. The anisotropic values of Ba<sub>2</sub>HfTiO<sub>6</sub>, Ba<sub>2</sub>CeTiO<sub>6</sub> and Ba<sub>2</sub>TeTiO<sub>6</sub> are 1.14, 0.67 and 0.80 respectively. The electronic bandgap values of Ba<sub>2</sub>HfTiO<sub>6</sub>, Ba<sub>2</sub>CeTiO<sub>6</sub>, and Ba<sub>2</sub>TeTiO<sub>6</sub> are computed as 3.44 eV, 2.96 eV, and 1.26 eV using the Tran-Blaha-modified Becke–Johnson approach. Moreover, the bandgap of Ba<sub>2</sub>TeTiO<sub>6</sub> is compatible for solar cell applications. Optical investigation demonstrates that Ba<sub>2</sub>TeTiO<sub>6</sub> shows maximum absorption in visible light among the studied perovskites. Lastly, the transport properties exhibit figure of merit values of 0.73, 0.77 and 0.81 for Ba<sub>2</sub>HfTiO<sub>6</sub>, Ba<sub>2</sub>CeTiO<sub>6</sub>, and Ba<sub>2</sub>TeTiO<sub>6</sub> respectively. Consequently, with the bandgap falling in the visible region and high figure of merit among the studied perovskites, Ba<sub>2</sub>TeTiO<sub>6</sub> emerges as the most suitable candidate for solar cell applications based on its electronic, optical, and thermoelectric properties.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 2","pages":"407 - 417"},"PeriodicalIF":2.2,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140805782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Matched coordinate technique in the analysis of self-assembled cylinders","authors":"Seyed Amir Hossein Nekuee","doi":"10.1007/s10825-024-02163-8","DOIUrl":"10.1007/s10825-024-02163-8","url":null,"abstract":"<div><p>This paper explores the utilization of matched coordinates for the comprehensive analysis of self-assembled cylinders, specifically focusing on a crossed grating with circular cross section within a hexagonal lattice. By incorporating the matched coordinate technique into the Fourier modal method (FMM), the paper addresses the limitations associated with staircase approximations when solving Maxwell’s equations in a curvilinear coordinate system. The study demonstrates that the proposed transformation significantly enhances the efficiency and speed of FMM, particularly in extracting optical characteristics such as reflection and transmission coefficients. Through a comparative analysis of a hexagonal lattice comprising air-suspended cylindrical resonators with a dielectric constant of 2, the proposed technique is shown to achieve comparable accuracy while utilizing only <span>(40%)</span> of the harmonics required by conventional methods. As a result, this approach offers substantial computational cost reductions of up to an order of magnitude.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"690 - 695"},"PeriodicalIF":2.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Triple-metal gate work function engineering to improve the performance of junctionless cylindrical gate-all-around Si nanowire MOSFETs for the upcoming sub-3-nm technology node","authors":"Sanjay, Vibhor Kumar, Anil Vohra","doi":"10.1007/s10825-024-02148-7","DOIUrl":"10.1007/s10825-024-02148-7","url":null,"abstract":"<div><p>Moore’s law, along with the International Roadmap for Devices and Systems, continues to guide the scaling of devices below 10 nm. The challenges posed by such small-dimensioned devices form the basis of the present work. A junctionless MOSFET with a triple-metal gate structure is proposed as an alternative to conventional single-gate bulk MOSFETs for future CMOS technology. The present work investigated the direct current and analog/radio frequency characteristics including the drain current <span>(({I}_{{text{D}}})</span>), transconductance <span>({(g}_{m}))</span>, transconductance generation factor (TGF), cut-off frequency <span>({(f}_{T}))</span>, frequency–transconductance product (FTP), transit time <span>((tau ),)</span> and the total resistance of the source region, drain region, and channel <span>({(R}_{{text{SD}}+{text{CH}}}))</span> for triple-metal (TM) inversion-mode (IM) and junctionless (JL) cylindrical gate-all-around (CGAA) silicon nanowire (SiNW) MOSFETs with 3-nm gate length using the Silvaco ATLAS 3D TCAD tool. The non-equilibrium Green’s function and the self-consistent solution of the Schrödinger and Poisson equations were considered. The channel was taken to be lightly doped in the case of the IM TM CGAA SiNW device. The effect of the TM gate work function engineering for a SiNW channel with a diameter of 3 nm and gate oxide <span>(({{{text{Al}}}_{2}{text{O}}}_{3}))</span> thickness of 0.8 nm was investigated with respect to <span>({I}_{D})</span>,<span>({ g}_{m})</span>, TGF, <span>({f}_{T})</span>, <span>(tau)</span>, FTP, and <span>({R}_{{text{SD}}+{text{CH}}})</span>, and a comparative study between the IM TM and JL TM CGAA SiNW devices was carried out with respect to these parameters. For the JL device, optimization of the doping concentration was performed to obtain the same (i) <i>I</i><sub>ON</sub> current and (ii) threshold voltage (<i>V</i><sub>TH</sub>) as the IM device. An 8.61- and 5.72-fold reduction in <i>I</i><sub>OFF</sub> was seen for the same <i>I</i><sub>ON</sub> and <i>V</i><sub>TH</sub> for the JL versus the IM device. It was found that the TM gate variation led to a reduction in drain-induced barrier lowering (DIBL) in the IM and JL devices. The JL SiNW showed much lower DIBL of ~39.49 mV/V, a near-ideal subthreshold slope (SS) of ~60 mV/dec, and higher <span>({{text{I}}}_{{text{ON}}}/{{text{I}}}_{{text{OFF}}})</span> current ratio of ~2.98 × 10<sup>12</sup>. which is much better than the values reported in the literature for CGAA devices. Also, the JL SiNW device was found to perform better than the IM SiNW device in terms of SS, DIBL, <span>({{text{I}}}_{{text{ON}}}/{{text{I}}}_{{text{OFF}}})</span>, <span>({g}_{m},)</span> TGF, <i>f</i><sub><i>T</i></sub>, <span>(tau)</span>, FTP, and <span>({R}_{{text{SD}}+{text{CH}}})</span>.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 2","pages":"267 - 278"},"PeriodicalIF":2.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. B. Gurulakshmi, G. Rajesh, B. Saroja, T. Jackulin
{"title":"Hamiltonian deep neural network optimized with pelican optimization algorithm-fostered substrate-integrated waveguide antenna design for 5G","authors":"A. B. Gurulakshmi, G. Rajesh, B. Saroja, T. Jackulin","doi":"10.1007/s10825-024-02154-9","DOIUrl":"10.1007/s10825-024-02154-9","url":null,"abstract":"<div><p>Due to the growing need for higher speed data, the 5G terrestrial heterogeneous wireless network deployments are expected to happen quickly throughout the world in the next decade. In such type of networks, mm-wave small-cells overlapped the sub-6 GHz macro-cells being used to serve to population-rich areas. Subsequently, many problems appear with the antenna design technologies. The presented antenna is functioning at a frequency range from 24.8 to 31.6 GHz, with a 24% bandwidth and 8.5 dB peak gain at 27 GHz. It encompasses the complete 28 GHz frequency band utilized through 5G applications. Consequently, fifth-generation communication systems are best suited for it. The proposed Hamiltonian deep neural network optimized with pelican Optimization Algorithm-fostered Substrate-Integrated Waveguide Antenna Design for 5G (SIW-HDNN-POA-5G) is implemented, and performance of proposed technique is estimated based on several metrics, including resonant frequency (GHz), reflection coefficient (S11 in dB), mean absolute error (MAE), and root mean square error (RMSE). The proposed SIW-HDNN-POA-5G method provides 24.36%, 33.55% and 44.22% higher gain and 43.21%, 38.87% and 25.65% lesser mean absolute error comparing to the existing designs, like Design of Zero Clearance SIW End fire Antenna Array Based on Machine Learning-Assisted Optimization (SIW-MLAO-5G), SIW-Fed Wideband Filtering Antenna for Millimeter-Wave Applications (SIW-5G-MLOM), and Compact SIW Fed Dual-Port Single Element Annular Slot MIMO Antenna for 5G mm Wave Applications (SIW-FWFA-MMWA), respectively.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"620 - 633"},"PeriodicalIF":2.2,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ANN-based estimation of dispersion characteristics of slotted photonic crystal waveguides","authors":"Akash Kumar Pradhan, Chandra Prakash, Tanmoy Datta, Mrinal Sen, Haraprasad Mondal","doi":"10.1007/s10825-024-02162-9","DOIUrl":"10.1007/s10825-024-02162-9","url":null,"abstract":"<div><p>In this paper, the dispersion characteristics of slotted photonic crystal waveguides (SPCWs) have been estimated for any arbitrary set of structural parameters using machine learning-based artificial neural network (ANN). The machine learning-based technique yields faster solutions of the three-dimensional eigenvalue equations, which otherwise require substantial time using the conventional plane wave expansion (PWE)-based numerical simulations. Most importantly, the novel contribution of the work lies in estimating the structural parameters of the SPCWs from the given specifications of the dispersion characteristics through an inverse computation. A simple feed-forward neural network has been employed for both the forward and inverse estimations. The computation performances using both the ANN model and PWE simulations are analyzed and compared. The research offers significant implications for the field of photonics. By employing machine learning techniques, particularly ANNs, researchers and engineers can swiftly and efficiently analyze the dispersion properties of SPCWs, facilitating rapid prototyping and optimization of photonic devices. Additionally, the capability to infer structural parameters from desired dispersion characteristics streamlines the design process, potentially leading to the development of customized waveguides tailored to specific applications.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"552 - 560"},"PeriodicalIF":2.2,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcus Wilson, Logan Cowie, Vance Farrow, Michael Cree, Jonathan Scott
{"title":"Rapid time-domain simulation of fractional capacitors with SPICE","authors":"Marcus Wilson, Logan Cowie, Vance Farrow, Michael Cree, Jonathan Scott","doi":"10.1007/s10825-024-02160-x","DOIUrl":"10.1007/s10825-024-02160-x","url":null,"abstract":"<div><p>Fractional capacitors, commonly called constant-phase elements or CPEs, are used in modeling and control applications, for example, for rechargeable batteries. Unfortunately, they are not natively supported in the well-used circuit simulator SPICE. This manuscript presents and demonstrates a modeling approach that allows users to incorporate these elements in circuits and model the response in the time domain. The novelty is that we implement for the first time a particular configuration of RC elements in parallel in a Foster-type network with SPICE in order to simulate a constant-phase element across a defined frequency range. We demonstrate that the circuit produces the required impedance spectrum in the frequency domain, and shows a power-law voltage response to a step change in current in the time domain, consistent with theory, and is able to reproduce the experimental voltage response to a complicated current profile in the time domain. The error depends on the chosen frequency limits and the number of RC branches, in addition to very small SPICE numerical errors. We are able to define an optimum circuit description that minimizes error while maintaining a short computation time. The scientific value is that the work permits rapid and accurate evaluation of the response of CPEs in the time domain, faster than other methods, using open source tools.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"677 - 689"},"PeriodicalIF":2.2,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10825-024-02160-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Device modeling and performance analysis of an all-inorganic lead-free Ag2BiI5 rudorffite-based solar cell with AgSCN as HTL via GPVDM simulation software","authors":"Samaneh Mozaffari","doi":"10.1007/s10825-024-02157-6","DOIUrl":"10.1007/s10825-024-02157-6","url":null,"abstract":"<div><p>The unprecedented photo-electronic conversion efficiency (PCE) of organic–inorganic lead perovskite solar cells (PSCs), over 25% within a span of 10 years, makes them an optimistic solution for sustainable and renewable energy sources. However, issues associated with their toxicity and short lifetime raise public concern for their long-term utility. Therefore, resolving these two problems is urgent for developing sustainable and environmentally friendly PSCs. In this study, a novel configuration of a lead-free light absorbing layer with a rudorffite structure (Ag<sub>2</sub>BiI<sub>5</sub>) is simulated, using the GPVDM software with TiO<sub>2</sub> and Spiro-OMeTAD as traditional electron and hole transport layers (HTLs). The proposed PSC structure is compared to other published results in the literature. In the meantime, by fitting the current density-voltage characteristic curves of theoretical data and experimental results, the precise photovoltaic parameters of the Ag<sub>2</sub>BiI<sub>5</sub> structure are extracted. After optimizing the thickness of the Ag<sub>2</sub>BiI<sub>5</sub> and replacing TiO<sub>2</sub> with SnO<sub>2</sub> and Spiro-OMeTAD with new a HTL of AgSCN, a PSC in the form of normal a FTO/SnO<sub>2</sub>/Ag<sub>2</sub>BiI<sub>5</sub>/AgSCN/Ag structure is designed. Further, the effect of the thickness of the AgSCN HTL, defect density of light absorbing layer, operating temperature and metal contacts on the photovoltaic performance of the device are thoroughly evaluated. Under the optimized AgSCN HTL thickness, the best theoretical efficiency of 3.61% is achieved for this normal configuration, which is the highest value reported among rudorffite light absorbing materials-based PSCs.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"600 - 612"},"PeriodicalIF":2.2,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khadija Abouhssous, Layla Wakrim, Asmaa Zugari, Alia Zakriti
{"title":"A multi-objective genetic algorithm approach applied to compact meander branch line couplers design for 5G-enabled IoT applications","authors":"Khadija Abouhssous, Layla Wakrim, Asmaa Zugari, Alia Zakriti","doi":"10.1007/s10825-024-02155-8","DOIUrl":"10.1007/s10825-024-02155-8","url":null,"abstract":"<div><p>This article describes a multi-objective genetic algorithm (MOGA)-based procedure used for the size reduction of a hybrid compact branch line coupler (BLC) intended for 5G applications that meet the requirements of IoT applications. Conventional <i>λ</i>/4 coupler transmission lines are replaced with meandering transmission lines to provide three different, simple and elegant designs that can operate at 3.5 GHz. A MOGA process is used to simultaneously balance the different design requirements and significantly reduce the bulky conventional structure size while maintaining high performance. To implement the optimization process, the proposed BLCs are designed using an interface between MATLAB software and a VBA script in the CST Studio simulator. The simulation results demonstrate a size reduction of 73.11%, 76.2% and 80%, respectively, for the three designs compared to conventional one. Then, for the demonstration of miniature BLCs operating at 3.5 GHz are fabricated on an FR-4 substrate. The measurements show good agreement with those obtained by simulation, making these BLCs a suitable choice for modern telecommunication systems requiring high compactness.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"634 - 646"},"PeriodicalIF":2.2,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}