{"title":"Numerical modelling of the surface plasmon modes of a circular cylindrical three-layer graphene waveguide","authors":"Ramnarayan, Ravindra Singh, Priyanka Yadav, Mahendra Kumar, Surendra Prasad","doi":"10.1007/s10825-024-02250-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the characteristics of the fundamental mode of surface plasmons in a circular cylindrical three-layer graphene waveguide structure are investigated. By using Maxwell equations in the cylindrical coordinate system and applying the boundary conditions, the dispersion relation has been derived for the fundamental mode. In the proposed model, along with the electric field distribution in the waveguide, the effect of different model parameters on the dispersion curve has also been investigated. For instance, the effect of chemical potential, temperature and the separation between the first-second and second-third layers of the graphene has been shown and discussed in detail. Furthermore, the effect of chemical potential, temperature and separation between the first-second and second-third layers of the graphene on the propagation length and phase speed is also discussed.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02250-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the characteristics of the fundamental mode of surface plasmons in a circular cylindrical three-layer graphene waveguide structure are investigated. By using Maxwell equations in the cylindrical coordinate system and applying the boundary conditions, the dispersion relation has been derived for the fundamental mode. In the proposed model, along with the electric field distribution in the waveguide, the effect of different model parameters on the dispersion curve has also been investigated. For instance, the effect of chemical potential, temperature and the separation between the first-second and second-third layers of the graphene has been shown and discussed in detail. Furthermore, the effect of chemical potential, temperature and separation between the first-second and second-third layers of the graphene on the propagation length and phase speed is also discussed.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.