{"title":"Manipulation of polarization-dependent electromagnetic wavefront via anisotropic metasurfaces","authors":"Shaohua Ye, Yangsen Hu, Jin Li, Song Wu","doi":"10.1007/s10825-024-02254-6","DOIUrl":null,"url":null,"abstract":"<div><p>Metasurfaces have garnered significant attention in recent years for their ability to manipulate electromagnetic (EM) wave propagation, owing to their high design flexibility, low profiles, and ease of fabrication. This study proposes the use of polarization-dependent anisotropic metasurfaces to manipulate the phase of orthogonal linearly polarized EM waves, enabling polarization multiplexing with distinct functionalities based on incident polarizations. Additionally, the proposed metasurfaces enable the generation of single pencil beams, multiple pencil beams, circularly and elliptically shaped radiation beams, offering versatile polarization manipulation capabilities. The radiation theory of planar array antennas was employed to predict the far-field patterns of the metasurfaces, demonstrating satisfactory agreement with simulated results and affirming the feasibility of the proposed method. The ability of focusing the incoming EM wave into a focal point or multi focal points and generating vortex beam carrying orbital angular momentum (OAM) under the incidence of orthogonal linearly polarized waves are also demonstrated by the proposed anisotropic metasurfaces. This proposed metasurfaces pave the way for the development of multifunctional metadevices capable of advanced EM regulation through polarization and phase modulations in free space, with potential applications in wireless communication, imaging, and radar systems.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02254-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurfaces have garnered significant attention in recent years for their ability to manipulate electromagnetic (EM) wave propagation, owing to their high design flexibility, low profiles, and ease of fabrication. This study proposes the use of polarization-dependent anisotropic metasurfaces to manipulate the phase of orthogonal linearly polarized EM waves, enabling polarization multiplexing with distinct functionalities based on incident polarizations. Additionally, the proposed metasurfaces enable the generation of single pencil beams, multiple pencil beams, circularly and elliptically shaped radiation beams, offering versatile polarization manipulation capabilities. The radiation theory of planar array antennas was employed to predict the far-field patterns of the metasurfaces, demonstrating satisfactory agreement with simulated results and affirming the feasibility of the proposed method. The ability of focusing the incoming EM wave into a focal point or multi focal points and generating vortex beam carrying orbital angular momentum (OAM) under the incidence of orthogonal linearly polarized waves are also demonstrated by the proposed anisotropic metasurfaces. This proposed metasurfaces pave the way for the development of multifunctional metadevices capable of advanced EM regulation through polarization and phase modulations in free space, with potential applications in wireless communication, imaging, and radar systems.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.