Forum of Mathematics Sigma最新文献

筛选
英文 中文
Lie algebra actions on module categories for truncated shifted yangians 截断移位扬基的模类上的李代数作用
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-31 DOI: 10.1017/fms.2024.3
Joel Kamnitzer, Ben Webster, Alex Weekes, Oded Yacobi
{"title":"Lie algebra actions on module categories for truncated shifted yangians","authors":"Joel Kamnitzer, Ben Webster, Alex Weekes, Oded Yacobi","doi":"10.1017/fms.2024.3","DOIUrl":"https://doi.org/10.1017/fms.2024.3","url":null,"abstract":"<p>We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.</p><p>After this general definition, we focus on quiver gauge theories attached to a quiver <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$Gamma $</span></span></img></span></span>. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathfrak {g}_{Gamma }$</span></span></img></span></span> on category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$ mathcal {O}$</span></span></img></span></span> for these Coulomb branch algebras. When <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$ Gamma $</span></span></img></span></span> is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.</p><p>To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139645141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Δ–Springer varieties and Hall–Littlewood polynomials Δ-斯普林格变种和霍尔-利特尔伍德多项式
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-31 DOI: 10.1017/fms.2024.1
Sean T. Griffin
{"title":"Δ–Springer varieties and Hall–Littlewood polynomials","authors":"Sean T. Griffin","doi":"10.1017/fms.2024.1","DOIUrl":"https://doi.org/10.1017/fms.2024.1","url":null,"abstract":"<p>The <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$Delta $</span></span></img></span></span>-Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author that have connections to the Delta Conjecture from algebraic combinatorics. We prove a positive Hall–Littlewood expansion formula for the graded Frobenius characteristic of the cohomology ring of a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Delta $</span></span></img></span></span>-Springer variety. We do this by interpreting the Frobenius characteristic in terms of counting points over a finite field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathbb {F}_q$</span></span></img></span></span> and partitioning the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$Delta $</span></span></img></span></span>-Springer variety into copies of Springer fibers crossed with affine spaces. As a special case, our proof method gives a geometric meaning to a formula of Haglund, Rhoades and Shimozono for the Hall–Littlewood expansion of the symmetric function in the Delta Conjecture at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$t=0$</span></span></img></span></span>.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139645010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Almost Everywhere Behavior of Functions According to Partition Measures 根据分割度量的函数几乎无处不在的行为
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-29 DOI: 10.1017/fms.2023.130
William Chan, Stephen Jackson, Nam Trang
{"title":"Almost Everywhere Behavior of Functions According to Partition Measures","authors":"William Chan, Stephen Jackson, Nam Trang","doi":"10.1017/fms.2023.130","DOIUrl":"https://doi.org/10.1017/fms.2023.130","url":null,"abstract":"This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>•</jats:label> If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline1.png\" /> <jats:tex-math> $kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a cardinal, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline2.png\" /> <jats:tex-math> $epsilon &lt; kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline3.png\" /> <jats:tex-math> ${mathrm {cof}}(epsilon ) = omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline4.png\" /> <jats:tex-math> $kappa rightarrow _* (kappa )^{epsilon cdot epsilon }_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline5.png\" /> <jats:tex-math> $Phi : [kappa ]^epsilon _* rightarrow mathrm {ON}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline6.png\" /> <jats:tex-math> $Phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the almost everywhere short length continuity property: There is a club <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline7.png\" /> <jats:tex-math> $C subseteq kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline8.png\" /> <jats:tex-math> $delta &lt; epsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> so that for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" x","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Pipe Dream Perspective on Totally Symmetric Self-Complementary Plane Partitions 完全对称自互补平面分区的烟斗梦视角
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-29 DOI: 10.1017/fms.2023.131
Daoji Huang, Jessica Striker
{"title":"A Pipe Dream Perspective on Totally Symmetric Self-Complementary Plane Partitions","authors":"Daoji Huang, Jessica Striker","doi":"10.1017/fms.2023.131","DOIUrl":"https://doi.org/10.1017/fms.2023.131","url":null,"abstract":"We characterize totally symmetric self-complementary plane partitions (TSSCPP) as bounded compatible sequences satisfying a Yamanouchi-like condition. As such, they are in bijection with certain pipe dreams. Using this characterization and the recent bijection of Gao–Huang between reduced pipe dreams and reduced bumpless pipe dreams, we give a bijection between alternating sign matrices and TSSCPP in the reduced, 1432-avoiding case. We also give a different bijection in the 1432- and 2143-avoiding case that preserves natural poset structures on the associated pipe dreams and bumpless pipe dreams.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functorial Fast-Growing Hierarchies 函数式快速增长层次结构
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-26 DOI: 10.1017/fms.2023.128
J. P. Aguilera, F. Pakhomov, A. Weiermann
{"title":"Functorial Fast-Growing Hierarchies","authors":"J. P. Aguilera, F. Pakhomov, A. Weiermann","doi":"10.1017/fms.2023.128","DOIUrl":"https://doi.org/10.1017/fms.2023.128","url":null,"abstract":"We prove an isomorphism theorem between the canonical denotation systems for large natural numbers and large countable ordinal numbers, linking two fundamental concepts in Proof Theory. The first one is fast-growing hierarchies. These are sequences of functions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001287_inline1.png\" /> <jats:tex-math> $mathbb {N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> obtained through processes such as the ones that yield multiplication from addition, exponentiation from multiplication, etc. and represent the canonical way of speaking about large finite numbers. The second one is ordinal collapsing functions, which represent the best-known method of describing large computable ordinals. We observe that fast-growing hierarchies can be naturally extended to functors on the categories of natural numbers and of linear orders. The isomorphism theorem asserts that the categorical extensions of binary fast-growing hierarchies to ordinals are isomorphic to denotation systems given by cardinal collapsing functions. As an application of this fact, we obtain a restatement of the subsystem <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001287_inline2.png\" /> <jats:tex-math> $Pi ^1_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001287_inline3.png\" /> <jats:tex-math> ${mathsf {CA_0}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of analysis as a higher-type well-ordering principle asserting that binary fast-growing hierarchies preserve well-foundedness.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PL-Genus of surfaces in homology balls PL-同调球中的曲面类
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-25 DOI: 10.1017/fms.2023.126
Jennifer Hom, Matthew Stoffregen, Hugo Zhou
{"title":"PL-Genus of surfaces in homology balls","authors":"Jennifer Hom, Matthew Stoffregen, Hugo Zhou","doi":"10.1017/fms.2023.126","DOIUrl":"https://doi.org/10.1017/fms.2023.126","url":null,"abstract":"<p>We consider manifold-knot pairs <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(Y,K)$</span></span></img></span></span>, where <span>Y</span> is a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Sigma $</span></span></img></span></span> in a homology ball <span>X</span>, such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$partial (X, Sigma ) = (Y, K)$</span></span></img></span></span> can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$(Y, K)$</span></span></img></span></span> to any knot in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$S^3$</span></span></img></span></span> can be arbitrarily large. The proof relies on Heegaard Floer homology.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic expansion of matrix models in the multi-cut regime 多切机制中矩阵模型的渐近展开
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-24 DOI: 10.1017/fms.2023.129
Gaëtan Borot, Alice Guionnet
{"title":"Asymptotic expansion of matrix models in the multi-cut regime","authors":"Gaëtan Borot, Alice Guionnet","doi":"10.1017/fms.2023.129","DOIUrl":"https://doi.org/10.1017/fms.2023.129","url":null,"abstract":"We establish the asymptotic expansion in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001299_inline2.png\" /> <jats:tex-math> $beta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> matrix models with a confining, off-critical potential in the regime where the support of the equilibrium measure is a finite union of segments. We first address the case where the filling fractions of these segments are fixed and show the existence of a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001299_inline3.png\" /> <jats:tex-math> $frac {1}{N}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> expansion. We then study the asymptotics of the sum over the filling fractions to obtain the full asymptotic expansion for the initial problem in the multi-cut regime. In particular, we identify the fluctuations of the linear statistics and show that they are approximated in law by the sum of a Gaussian random variable and an independent Gaussian discrete random variable with oscillating center. Fluctuations of filling fractions are also described by an oscillating discrete Gaussian random variable. We apply our results to study the all-order small dispersion asymptotics of solutions of the Toda chain associated with the one Hermitian matrix model (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001299_inline4.png\" /> <jats:tex-math> $beta = 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) as well as orthogonal (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001299_inline5.png\" /> <jats:tex-math> $beta = 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) and skew-orthogonal (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001299_inline6.png\" /> <jats:tex-math> $beta = 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) polynomials outside the bulk.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Manin–Peyre conjecture for smooth spherical Fano varieties of semisimple rank one 半简单一阶光滑球面法诺变种的马宁-佩雷猜想
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-18 DOI: 10.1017/fms.2023.123
Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi
{"title":"The Manin–Peyre conjecture for smooth spherical Fano varieties of semisimple rank one","authors":"Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi","doi":"10.1017/fms.2023.123","DOIUrl":"https://doi.org/10.1017/fms.2023.123","url":null,"abstract":"The Manin–Peyre conjecture is established for a class of smooth spherical Fano varieties of semisimple rank one. This includes all smooth spherical Fano threefolds of type <jats:italic>T</jats:italic> as well as some higher-dimensional smooth spherical Fano varieties.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The exact consistency strength of the generic absoluteness for the universally Baire sets 普遍拜尔集合的通用绝对性的精确一致性强度
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-18 DOI: 10.1017/fms.2023.127
Grigor Sargsyan, Nam Trang
{"title":"The exact consistency strength of the generic absoluteness for the universally Baire sets","authors":"Grigor Sargsyan, Nam Trang","doi":"10.1017/fms.2023.127","DOIUrl":"https://doi.org/10.1017/fms.2023.127","url":null,"abstract":"A set of reals is <jats:italic>universally Baire</jats:italic> if all of its continuous preimages in topological spaces have the Baire property. <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline1.png\" /> <jats:tex-math> $mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline2.png\" /> <jats:tex-math> $mathsf {Largest Suslin Axiom}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline3.png\" /> <jats:tex-math> $mathsf {LSA}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline4.png\" /> <jats:tex-math> $mathsf {LSA-over-uB}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the statement that in all (set) generic extensions there is a model of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline5.png\" /> <jats:tex-math> $mathsf {LSA}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose Suslin, co-Suslin sets are the universally Baire sets. We show that over some mild large cardinal theory, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline6.png\" /> <jats:tex-math> $mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is equiconsistent with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline7.png\" /> <jats:tex-math> $mathsf {LSA-over-uB}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we obtain that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline8.png\" /> <jats:tex-math> $mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is weaker than the theory ‘<jats:inline-","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cogroupoid structures on the circle and the Hodge degeneration 圆上的类群结构和霍奇退化
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-01-15 DOI: 10.1017/fms.2023.122
Tasos Moulinos
{"title":"Cogroupoid structures on the circle and the Hodge degeneration","authors":"Tasos Moulinos","doi":"10.1017/fms.2023.122","DOIUrl":"https://doi.org/10.1017/fms.2023.122","url":null,"abstract":"<p>We exhibit the Hodge degeneration from nonabelian Hodge theory as a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-fold delooping of the filtered loop space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$E_2$</span></span></img></span></span>-groupoid in formal moduli problems. This is an iterated groupoid object which in degree <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span> recovers the filtered circle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S^1_{fil}$</span></span></img></span></span> of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E_2$</span></span></img></span></span>-cogroupoid object in the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$infty $</span></span></img></span></span>-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S^1$</span></span></img></span></span>, as well as the Todd class of the Lie algebroid <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$mathbb {T}_{X}$</span></span></img></span></span>; this is an invariant of a smooth and proper scheme <span>X</span> that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontriv","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139469967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信