圆上的类群结构和霍奇退化

IF 1.2 2区 数学 Q1 MATHEMATICS
Tasos Moulinos
{"title":"圆上的类群结构和霍奇退化","authors":"Tasos Moulinos","doi":"10.1017/fms.2023.122","DOIUrl":null,"url":null,"abstract":"<p>We exhibit the Hodge degeneration from nonabelian Hodge theory as a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-fold delooping of the filtered loop space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$E_2$</span></span></img></span></span>-groupoid in formal moduli problems. This is an iterated groupoid object which in degree <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span> recovers the filtered circle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S^1_{fil}$</span></span></img></span></span> of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E_2$</span></span></img></span></span>-cogroupoid object in the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\infty $</span></span></img></span></span>-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S^1$</span></span></img></span></span>, as well as the Todd class of the Lie algebroid <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {T}_{X}$</span></span></img></span></span>; this is an invariant of a smooth and proper scheme <span>X</span> that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cogroupoid structures on the circle and the Hodge degeneration\",\"authors\":\"Tasos Moulinos\",\"doi\":\"10.1017/fms.2023.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We exhibit the Hodge degeneration from nonabelian Hodge theory as a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span>-fold delooping of the filtered loop space <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_2$</span></span></img></span></span>-groupoid in formal moduli problems. This is an iterated groupoid object which in degree <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1$</span></span></img></span></span> recovers the filtered circle <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^1_{fil}$</span></span></img></span></span> of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_2$</span></span></img></span></span>-cogroupoid object in the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\infty $</span></span></img></span></span>-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^1$</span></span></img></span></span>, as well as the Todd class of the Lie algebroid <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {T}_{X}$</span></span></img></span></span>; this is an invariant of a smooth and proper scheme <span>X</span> that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.122\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.122","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将非阿贝尔霍奇理论中的霍奇退化展示为形式模问题中过滤环空间 $E_2$ 群的 2$ 折叠脱环。这是一个迭代的类群对象,它在 1$ 度上恢复了[MRT22]的过滤圈 $S^1_{fil}$。这就利用了拓扑圆上迄今为止尚未研究过的附加结构,即空间$\infty $类别中的$E_2$类群对象。我们将这个类象结构与更常被研究的 $S^1$ 上的 "捏合映射 "以及 Lie algebroid $mathbb {T}_{X}$ 的 Todd 类联系起来;这是光滑和适当方案 X 的一个不变量,例如,它出现在格罗thendieck-Riemann-Roch 定理中。特别是,我们把方案存在非rivial Todd 类与捏合映射在理性同调理论中不具形式性联系起来。最后,我们记录了这一点结构在霍赫希尔德同调层面上的一些后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cogroupoid structures on the circle and the Hodge degeneration

We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$-fold delooping of the filtered loop space $E_2$-groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$-cogroupoid object in the $\infty $-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$, as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信