{"title":"圆上的类群结构和霍奇退化","authors":"Tasos Moulinos","doi":"10.1017/fms.2023.122","DOIUrl":null,"url":null,"abstract":"<p>We exhibit the Hodge degeneration from nonabelian Hodge theory as a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-fold delooping of the filtered loop space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$E_2$</span></span></img></span></span>-groupoid in formal moduli problems. This is an iterated groupoid object which in degree <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span> recovers the filtered circle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S^1_{fil}$</span></span></img></span></span> of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E_2$</span></span></img></span></span>-cogroupoid object in the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\infty $</span></span></img></span></span>-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S^1$</span></span></img></span></span>, as well as the Todd class of the Lie algebroid <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {T}_{X}$</span></span></img></span></span>; this is an invariant of a smooth and proper scheme <span>X</span> that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cogroupoid structures on the circle and the Hodge degeneration\",\"authors\":\"Tasos Moulinos\",\"doi\":\"10.1017/fms.2023.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We exhibit the Hodge degeneration from nonabelian Hodge theory as a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2$</span></span></img></span></span>-fold delooping of the filtered loop space <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_2$</span></span></img></span></span>-groupoid in formal moduli problems. This is an iterated groupoid object which in degree <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1$</span></span></img></span></span> recovers the filtered circle <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^1_{fil}$</span></span></img></span></span> of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_2$</span></span></img></span></span>-cogroupoid object in the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\infty $</span></span></img></span></span>-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^1$</span></span></img></span></span>, as well as the Todd class of the Lie algebroid <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240112035023147-0105:S2050509423001226:S2050509423001226_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {T}_{X}$</span></span></img></span></span>; this is an invariant of a smooth and proper scheme <span>X</span> that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.122\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.122","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cogroupoid structures on the circle and the Hodge degeneration
We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$-fold delooping of the filtered loop space $E_2$-groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$-cogroupoid object in the $\infty $-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$, as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.