Forum of Mathematics Sigma最新文献

筛选
英文 中文
Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics 轴对称不可压缩粘性等离子体:全局拟然性和渐近性
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-09-10 DOI: 10.1017/fms.2024.60
Diogo Arsénio, Zineb Hassainia, Haroune Houamed
{"title":"Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics","authors":"Diogo Arsénio, Zineb Hassainia, Haroune Houamed","doi":"10.1017/fms.2024.60","DOIUrl":"https://doi.org/10.1017/fms.2024.60","url":null,"abstract":"This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline1.png\"/> <jats:tex-math> $cin (c_0, infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for some threshold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline2.png\"/> <jats:tex-math> $c_0&gt;0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline3.png\"/> <jats:tex-math> $crightarrow infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting. The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline4.png\"/> <jats:tex-math> $cto infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> allows us to derive a robust nonlinear energy estimate which holds uniformly in <jats:italic>c</jats:italic>. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system. This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline5.png\"/> <jats:tex-math> $cto infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability in the category of smooth mod-p representations of 光滑模-p 表示类别中的稳定性
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-09-09 DOI: 10.1017/fms.2024.37
Konstantin Ardakov, Peter Schneider
{"title":"Stability in the category of smooth mod-p representations of","authors":"Konstantin Ardakov, Peter Schneider","doi":"10.1017/fms.2024.37","DOIUrl":"https://doi.org/10.1017/fms.2024.37","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline2.png\"/&gt; &lt;jats:tex-math&gt; $p geq 5$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be a prime number, and let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline3.png\"/&gt; &lt;jats:tex-math&gt; $G = {mathrm {SL}}_2(mathbb {Q}_p)$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline4.png\"/&gt; &lt;jats:tex-math&gt; $Xi = {mathrm {Spec}}(Z)$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; denote the spectrum of the centre &lt;jats:italic&gt;Z&lt;/jats:italic&gt; of the pro-&lt;jats:italic&gt;p&lt;/jats:italic&gt; Iwahori–Hecke algebra of &lt;jats:italic&gt;G&lt;/jats:italic&gt; with coefficients in a field &lt;jats:italic&gt;k&lt;/jats:italic&gt; of characteristic &lt;jats:italic&gt;p&lt;/jats:italic&gt;. Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline5.png\"/&gt; &lt;jats:tex-math&gt; $mathcal {R} subset Xi times Xi $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; denote the support of the pro-&lt;jats:italic&gt;p&lt;/jats:italic&gt; Iwahori &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline6.png\"/&gt; &lt;jats:tex-math&gt; ${mathrm {Ext}}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-algebra of &lt;jats:italic&gt;G&lt;/jats:italic&gt;, viewed as a &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline7.png\"/&gt; &lt;jats:tex-math&gt; $(Z,Z)$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-bimodule. We show that the locally ringed space &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline8.png\"/&gt; &lt;jats:tex-math&gt; $Xi /mathcal {R}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is a projective algebraic curve over &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline9.png\"/&gt; &lt;jats:tex-math&gt; ${mathrm {Spec}}(k)$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset &lt;jats:italic&gt;U&lt;/jats:italic&gt; of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline10.png\"/&gt; &lt;jats:tex-math&gt; $X","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds on multiplicities of symmetric pairs of finite groups 有限群对称对的乘数界值
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-09-09 DOI: 10.1017/fms.2024.58
Avraham Aizenbud, Nir Avni
{"title":"Bounds on multiplicities of symmetric pairs of finite groups","authors":"Avraham Aizenbud, Nir Avni","doi":"10.1017/fms.2024.58","DOIUrl":"https://doi.org/10.1017/fms.2024.58","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline1.png\"/&gt; &lt;jats:tex-math&gt; $Gamma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be a finite group, let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline2.png\"/&gt; &lt;jats:tex-math&gt; $theta $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be an involution of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline3.png\"/&gt; &lt;jats:tex-math&gt; $Gamma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline4.png\"/&gt; &lt;jats:tex-math&gt; $rho $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be an irreducible complex representation of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline5.png\"/&gt; &lt;jats:tex-math&gt; $Gamma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. We bound &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline6.png\"/&gt; &lt;jats:tex-math&gt; ${operatorname {dim}} rho ^{Gamma ^{theta }}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; in terms of the smallest dimension of a faithful &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline7.png\"/&gt; &lt;jats:tex-math&gt; $mathbb {F}_p$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-representation of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline8.png\"/&gt; &lt;jats:tex-math&gt; $Gamma /operatorname {mathrm {Rad}}_p(Gamma )$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, where &lt;jats:italic&gt;p&lt;/jats:italic&gt; is any odd prime and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline9.png\"/&gt; &lt;jats:tex-math&gt; $operatorname {mathrm {Rad}}_p(Gamma )$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the maximal normal &lt;jats:italic&gt;p&lt;/jats:italic&gt;-subgroup of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline10.png\"/&gt; &lt;jats:tex-math&gt; $Gamma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. This implies, in particular, tha","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure of a dilute spin-polarized Fermi gas: Lower bound 稀释自旋极化费米气体的压力:下限
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-09-09 DOI: 10.1017/fms.2024.56
Asbjørn Bækgaard Lauritsen, Robert Seiringer
{"title":"Pressure of a dilute spin-polarized Fermi gas: Lower bound","authors":"Asbjørn Bækgaard Lauritsen, Robert Seiringer","doi":"10.1017/fms.2024.56","DOIUrl":"https://doi.org/10.1017/fms.2024.56","url":null,"abstract":"We consider a dilute fully spin-polarized Fermi gas at positive temperature in dimensions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline1.png\"/> <jats:tex-math> $din {1,2,3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that the pressure of the interacting gas is bounded from below by that of the free gas plus, to leading order, an explicit term of order <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline2.png\"/> <jats:tex-math> $a^drho ^{2+2/d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>a</jats:italic> is the <jats:italic>p</jats:italic>-wave scattering length of the repulsive interaction and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline3.png\"/> <jats:tex-math> $rho $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the particle density. The results are valid for a wide range of repulsive interactions, including that of a hard core, and uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp. 237–260).","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the local -Bound of the Eisenstein series 关于爱森斯坦数列的局部束缚
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-09-06 DOI: 10.1017/fms.2024.59
Subhajit Jana, Amitay Kamber
{"title":"On the local -Bound of the Eisenstein series","authors":"Subhajit Jana, Amitay Kamber","doi":"10.1017/fms.2024.59","DOIUrl":"https://doi.org/10.1017/fms.2024.59","url":null,"abstract":"We study the growth of the local <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline2.png\"/> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a <jats:italic>poly-logarithmic</jats:italic> bound on an average, for a large class of reductive groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis, Lapid and Müller. As applications of our method, we prove the optimal lifting property for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline3.png\"/> <jats:tex-math> $mathrm {SL}_n(mathbb {Z}/qmathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for square-free <jats:italic>q</jats:italic>, as well as the Sarnak–Xue [52] counting property for the principal congruence subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline4.png\"/> <jats:tex-math> $mathrm {SL}_n(mathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of square-free level. This makes the recent results of Assing–Blomer [8] unconditional.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flags of sheaves, quivers and symmetric polynomials 剪切、四元组和对称多项式的标志
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-09-06 DOI: 10.1017/fms.2024.43
Giulio Bonelli, Nadir Fasola, Alessandro Tanzini
{"title":"Flags of sheaves, quivers and symmetric polynomials","authors":"Giulio Bonelli, Nadir Fasola, Alessandro Tanzini","doi":"10.1017/fms.2024.43","DOIUrl":"https://doi.org/10.1017/fms.2024.43","url":null,"abstract":"We study a quiver description of the nested Hilbert scheme of points on the affine plane and its higher rank generalization – that is, the moduli space of flags of framed torsion-free sheaves on the projective plane. We show that stable representations of the quiver provide an ADHM-like construction for such moduli spaces. We introduce a natural torus action and use equivariant localization to compute some of their (virtual) topological invariants, including the case of compact toric surfaces. We conjecture that the generating function of holomorphic Euler characteristics for rank one is given in terms of polynomials in the equivariant weights, which, for specific numerical types, coincide with (modified) Macdonald polynomials. From the physics viewpoint, the quivers we study describe a class of surface defects in four-dimensional supersymmetric gauge theories in terms of nested instantons.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems 关于斯坦纳三重系统中肥大树的埃利奥特-罗德尔猜想的证明
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-09-06 DOI: 10.1017/fms.2024.34
Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku
{"title":"A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems","authors":"Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku","doi":"10.1017/fms.2024.34","DOIUrl":"https://doi.org/10.1017/fms.2024.34","url":null,"abstract":"Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline1.png\"/> <jats:tex-math> $mu&gt;0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline2.png\"/> <jats:tex-math> $n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Every <jats:italic>n</jats:italic>-vertex Steiner triple system contains all hypertrees with at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline3.png\"/> <jats:tex-math> $(1-mu )n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices whenever <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline4.png\"/> <jats:tex-math> $ngeq n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove this conjecture.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistent transcendental Bézout theorems 持久超越贝祖特定理
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-08-27 DOI: 10.1017/fms.2024.49
Lev Buhovsky, Iosif Polterovich, Leonid Polterovich, Egor Shelukhin, Vukašin Stojisavljević
{"title":"Persistent transcendental Bézout theorems","authors":"Lev Buhovsky, Iosif Polterovich, Leonid Polterovich, Egor Shelukhin, Vukašin Stojisavljević","doi":"10.1017/fms.2024.49","DOIUrl":"https://doi.org/10.1017/fms.2024.49","url":null,"abstract":"An example of Cornalba and Shiffman from 1972 disproves in dimension two or higher a classical prediction that the count of zeros of holomorphic self-mappings of the complex linear space should be controlled by the maximum modulus function. We prove that such a bound holds for a modified coarse count inspired by the theory of persistence modules originating in topological data analysis.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sums of squares, Hankel index and almost real rank 平方和、汉克尔指数和几乎实等级
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-05-30 DOI: 10.1017/fms.2024.45
Grigoriy Blekherman, Justin Chen, Jaewoo Jung
{"title":"Sums of squares, Hankel index and almost real rank","authors":"Grigoriy Blekherman, Justin Chen, Jaewoo Jung","doi":"10.1017/fms.2024.45","DOIUrl":"https://doi.org/10.1017/fms.2024.45","url":null,"abstract":"The Hankel index of a real variety <jats:italic>X</jats:italic> is an invariant that quantifies the difference between nonnegative quadrics and sums of squares on <jats:italic>X</jats:italic>. In [5], the authors proved an intriguing bound on the Hankel index in terms of the Green–Lazarsfeld index, which measures the ‘linearity’ of the minimal free resolution of the ideal of <jats:italic>X</jats:italic>. In all previously known cases, this bound was tight. We provide the first class of examples where the bound is not tight; in fact, the difference between Hankel index and Green–Lazarsfeld index can be arbitrarily large. Our examples are outer projections of rational normal curves, where we identify the center of projection with a binary form <jats:italic>F</jats:italic>. The Green–Lazarsfeld index of the projected curve is given by the complex Waring border rank of <jats:italic>F</jats:italic> [16]. We show that the Hankel index is given by the <jats:italic>almost real</jats:italic> rank of <jats:italic>F</jats:italic>, which is a new notion that comes from decomposing <jats:italic>F</jats:italic> as a sum of powers of almost real forms. Finally, we determine the range of possible and typical almost real ranks for binary forms.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-invariants for cohomological representations of PGL(2) over arbitrary number fields 任意数域上 PGL(2) 同调表示的 L 不变式
IF 1.7 2区 数学
Forum of Mathematics Sigma Pub Date : 2024-05-30 DOI: 10.1017/fms.2024.51
Lennart Gehrmann, Maria Rosaria Pati
{"title":"L-invariants for cohomological representations of PGL(2) over arbitrary number fields","authors":"Lennart Gehrmann, Maria Rosaria Pati","doi":"10.1017/fms.2024.51","DOIUrl":"https://doi.org/10.1017/fms.2024.51","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline1.png\"/> <jats:tex-math> $pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a cuspidal, cohomological automorphic representation of an inner form <jats:italic>G</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline2.png\"/> <jats:tex-math> $operatorname {{PGL}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a number field <jats:italic>F</jats:italic> of arbitrary signature. Further, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline3.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime of <jats:italic>F</jats:italic> such that <jats:italic>G</jats:italic> is split at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline4.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the local component <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline5.png\"/> <jats:tex-math> $pi _{mathfrak {p}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline6.png\"/> <jats:tex-math> $pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline7.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Steinberg representation. Assuming that the representation is noncritical at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline8.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct automorphic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline9.png\"/> <jats:tex-math> $mathcal {L}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariants for the representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline10.png\"/> <jats:tex-m","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信