{"title":"Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics","authors":"Diogo Arsénio, Zineb Hassainia, Haroune Houamed","doi":"10.1017/fms.2024.60","DOIUrl":"https://doi.org/10.1017/fms.2024.60","url":null,"abstract":"This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline1.png\"/> <jats:tex-math> $cin (c_0, infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for some threshold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline2.png\"/> <jats:tex-math> $c_0>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline3.png\"/> <jats:tex-math> $crightarrow infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting. The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline4.png\"/> <jats:tex-math> $cto infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> allows us to derive a robust nonlinear energy estimate which holds uniformly in <jats:italic>c</jats:italic>. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system. This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline5.png\"/> <jats:tex-math> $cto infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability in the category of smooth mod-p representations of","authors":"Konstantin Ardakov, Peter Schneider","doi":"10.1017/fms.2024.37","DOIUrl":"https://doi.org/10.1017/fms.2024.37","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline2.png\"/> <jats:tex-math> $p geq 5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime number, and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline3.png\"/> <jats:tex-math> $G = {mathrm {SL}}_2(mathbb {Q}_p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline4.png\"/> <jats:tex-math> $Xi = {mathrm {Spec}}(Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the spectrum of the centre <jats:italic>Z</jats:italic> of the pro-<jats:italic>p</jats:italic> Iwahori–Hecke algebra of <jats:italic>G</jats:italic> with coefficients in a field <jats:italic>k</jats:italic> of characteristic <jats:italic>p</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline5.png\"/> <jats:tex-math> $mathcal {R} subset Xi times Xi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the support of the pro-<jats:italic>p</jats:italic> Iwahori <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline6.png\"/> <jats:tex-math> ${mathrm {Ext}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of <jats:italic>G</jats:italic>, viewed as a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline7.png\"/> <jats:tex-math> $(Z,Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodule. We show that the locally ringed space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline8.png\"/> <jats:tex-math> $Xi /mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a projective algebraic curve over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline9.png\"/> <jats:tex-math> ${mathrm {Spec}}(k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset <jats:italic>U</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline10.png\"/> <jats:tex-math> $X","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pressure of a dilute spin-polarized Fermi gas: Lower bound","authors":"Asbjørn Bækgaard Lauritsen, Robert Seiringer","doi":"10.1017/fms.2024.56","DOIUrl":"https://doi.org/10.1017/fms.2024.56","url":null,"abstract":"We consider a dilute fully spin-polarized Fermi gas at positive temperature in dimensions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline1.png\"/> <jats:tex-math> $din {1,2,3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that the pressure of the interacting gas is bounded from below by that of the free gas plus, to leading order, an explicit term of order <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline2.png\"/> <jats:tex-math> $a^drho ^{2+2/d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>a</jats:italic> is the <jats:italic>p</jats:italic>-wave scattering length of the repulsive interaction and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000562_inline3.png\"/> <jats:tex-math> $rho $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the particle density. The results are valid for a wide range of repulsive interactions, including that of a hard core, and uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp. 237–260).","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the local -Bound of the Eisenstein series","authors":"Subhajit Jana, Amitay Kamber","doi":"10.1017/fms.2024.59","DOIUrl":"https://doi.org/10.1017/fms.2024.59","url":null,"abstract":"We study the growth of the local <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline2.png\"/> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a <jats:italic>poly-logarithmic</jats:italic> bound on an average, for a large class of reductive groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis, Lapid and Müller. As applications of our method, we prove the optimal lifting property for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline3.png\"/> <jats:tex-math> $mathrm {SL}_n(mathbb {Z}/qmathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for square-free <jats:italic>q</jats:italic>, as well as the Sarnak–Xue [52] counting property for the principal congruence subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline4.png\"/> <jats:tex-math> $mathrm {SL}_n(mathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of square-free level. This makes the recent results of Assing–Blomer [8] unconditional.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flags of sheaves, quivers and symmetric polynomials","authors":"Giulio Bonelli, Nadir Fasola, Alessandro Tanzini","doi":"10.1017/fms.2024.43","DOIUrl":"https://doi.org/10.1017/fms.2024.43","url":null,"abstract":"We study a quiver description of the nested Hilbert scheme of points on the affine plane and its higher rank generalization – that is, the moduli space of flags of framed torsion-free sheaves on the projective plane. We show that stable representations of the quiver provide an ADHM-like construction for such moduli spaces. We introduce a natural torus action and use equivariant localization to compute some of their (virtual) topological invariants, including the case of compact toric surfaces. We conjecture that the generating function of holomorphic Euler characteristics for rank one is given in terms of polynomials in the equivariant weights, which, for specific numerical types, coincide with (modified) Macdonald polynomials. From the physics viewpoint, the quivers we study describe a class of surface defects in four-dimensional supersymmetric gauge theories in terms of nested instantons.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku
{"title":"A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems","authors":"Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku","doi":"10.1017/fms.2024.34","DOIUrl":"https://doi.org/10.1017/fms.2024.34","url":null,"abstract":"Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline1.png\"/> <jats:tex-math> $mu>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline2.png\"/> <jats:tex-math> $n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Every <jats:italic>n</jats:italic>-vertex Steiner triple system contains all hypertrees with at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline3.png\"/> <jats:tex-math> $(1-mu )n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices whenever <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline4.png\"/> <jats:tex-math> $ngeq n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove this conjecture.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lev Buhovsky, Iosif Polterovich, Leonid Polterovich, Egor Shelukhin, Vukašin Stojisavljević
{"title":"Persistent transcendental Bézout theorems","authors":"Lev Buhovsky, Iosif Polterovich, Leonid Polterovich, Egor Shelukhin, Vukašin Stojisavljević","doi":"10.1017/fms.2024.49","DOIUrl":"https://doi.org/10.1017/fms.2024.49","url":null,"abstract":"An example of Cornalba and Shiffman from 1972 disproves in dimension two or higher a classical prediction that the count of zeros of holomorphic self-mappings of the complex linear space should be controlled by the maximum modulus function. We prove that such a bound holds for a modified coarse count inspired by the theory of persistence modules originating in topological data analysis.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sums of squares, Hankel index and almost real rank","authors":"Grigoriy Blekherman, Justin Chen, Jaewoo Jung","doi":"10.1017/fms.2024.45","DOIUrl":"https://doi.org/10.1017/fms.2024.45","url":null,"abstract":"The Hankel index of a real variety <jats:italic>X</jats:italic> is an invariant that quantifies the difference between nonnegative quadrics and sums of squares on <jats:italic>X</jats:italic>. In [5], the authors proved an intriguing bound on the Hankel index in terms of the Green–Lazarsfeld index, which measures the ‘linearity’ of the minimal free resolution of the ideal of <jats:italic>X</jats:italic>. In all previously known cases, this bound was tight. We provide the first class of examples where the bound is not tight; in fact, the difference between Hankel index and Green–Lazarsfeld index can be arbitrarily large. Our examples are outer projections of rational normal curves, where we identify the center of projection with a binary form <jats:italic>F</jats:italic>. The Green–Lazarsfeld index of the projected curve is given by the complex Waring border rank of <jats:italic>F</jats:italic> [16]. We show that the Hankel index is given by the <jats:italic>almost real</jats:italic> rank of <jats:italic>F</jats:italic>, which is a new notion that comes from decomposing <jats:italic>F</jats:italic> as a sum of powers of almost real forms. Finally, we determine the range of possible and typical almost real ranks for binary forms.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"L-invariants for cohomological representations of PGL(2) over arbitrary number fields","authors":"Lennart Gehrmann, Maria Rosaria Pati","doi":"10.1017/fms.2024.51","DOIUrl":"https://doi.org/10.1017/fms.2024.51","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline1.png\"/> <jats:tex-math> $pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a cuspidal, cohomological automorphic representation of an inner form <jats:italic>G</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline2.png\"/> <jats:tex-math> $operatorname {{PGL}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a number field <jats:italic>F</jats:italic> of arbitrary signature. Further, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline3.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime of <jats:italic>F</jats:italic> such that <jats:italic>G</jats:italic> is split at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline4.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the local component <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline5.png\"/> <jats:tex-math> $pi _{mathfrak {p}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline6.png\"/> <jats:tex-math> $pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline7.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Steinberg representation. Assuming that the representation is noncritical at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline8.png\"/> <jats:tex-math> $mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct automorphic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline9.png\"/> <jats:tex-math> $mathcal {L}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariants for the representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline10.png\"/> <jats:tex-m","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}