关于斯坦纳三重系统中肥大树的埃利奥特-罗德尔猜想的证明

IF 1.2 2区 数学 Q1 MATHEMATICS
Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku
{"title":"关于斯坦纳三重系统中肥大树的埃利奥特-罗德尔猜想的证明","authors":"Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku","doi":"10.1017/fms.2024.34","DOIUrl":null,"url":null,"abstract":"Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline1.png\"/> <jats:tex-math> $\\mu&gt;0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline2.png\"/> <jats:tex-math> $n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Every <jats:italic>n</jats:italic>-vertex Steiner triple system contains all hypertrees with at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline3.png\"/> <jats:tex-math> $(1-\\mu )n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices whenever <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000343_inline4.png\"/> <jats:tex-math> $n\\geq n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove this conjecture.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"68 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems\",\"authors\":\"Seonghyuk Im, Jaehoon Kim, Joonkyung Lee, Abhishek Methuku\",\"doi\":\"10.1017/fms.2024.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000343_inline1.png\\\"/> <jats:tex-math> $\\\\mu&gt;0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000343_inline2.png\\\"/> <jats:tex-math> $n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Every <jats:italic>n</jats:italic>-vertex Steiner triple system contains all hypertrees with at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000343_inline3.png\\\"/> <jats:tex-math> $(1-\\\\mu )n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices whenever <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000343_inline4.png\\\"/> <jats:tex-math> $n\\\\geq n_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove this conjecture.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.34\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.34","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

超树是线性超图,其中每两个顶点都由一条唯一的路径连接。埃利奥特和罗德尔猜想,对于任何给定的 $\mu>0$ ,都存在 $n_0$ ,使得以下条件成立。当 $n\geq n_0$ 时,每一个 n 个顶点的斯坦纳三重系统都包含最多有 $(1-\mu)n$ 顶点的所有高树。我们将证明这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proof of the Elliott–Rödl conjecture on hypertrees in Steiner triple systems
Hypertrees are linear hypergraphs where every two vertices are connected by a unique path. Elliott and Rödl conjectured that for any given $\mu>0$ , there exists $n_0$ such that the following holds. Every n-vertex Steiner triple system contains all hypertrees with at most $(1-\mu )n$ vertices whenever $n\geq n_0$ . We prove this conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信