Stability in the category of smooth mod-p representations of

IF 1.2 2区 数学 Q1 MATHEMATICS
Konstantin Ardakov, Peter Schneider
{"title":"Stability in the category of smooth mod-p representations of","authors":"Konstantin Ardakov, Peter Schneider","doi":"10.1017/fms.2024.37","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline2.png\"/> <jats:tex-math> $p \\geq 5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime number, and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline3.png\"/> <jats:tex-math> $G = {\\mathrm {SL}}_2(\\mathbb {Q}_p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline4.png\"/> <jats:tex-math> $\\Xi = {\\mathrm {Spec}}(Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the spectrum of the centre <jats:italic>Z</jats:italic> of the pro-<jats:italic>p</jats:italic> Iwahori–Hecke algebra of <jats:italic>G</jats:italic> with coefficients in a field <jats:italic>k</jats:italic> of characteristic <jats:italic>p</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline5.png\"/> <jats:tex-math> $\\mathcal {R} \\subset \\Xi \\times \\Xi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the support of the pro-<jats:italic>p</jats:italic> Iwahori <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline6.png\"/> <jats:tex-math> ${\\mathrm {Ext}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of <jats:italic>G</jats:italic>, viewed as a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline7.png\"/> <jats:tex-math> $(Z,Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodule. We show that the locally ringed space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline8.png\"/> <jats:tex-math> $\\Xi /\\mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a projective algebraic curve over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline9.png\"/> <jats:tex-math> ${\\mathrm {Spec}}(k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset <jats:italic>U</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline10.png\"/> <jats:tex-math> $\\Xi /\\mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct a stable localising subcategory <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline11.png\"/> <jats:tex-math> $\\mathcal {L}_U$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the category of smooth <jats:italic>k</jats:italic>-linear representations of <jats:italic>G</jats:italic>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.37","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$ . Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let $\mathcal {R} \subset \Xi \times \Xi $ denote the support of the pro-p Iwahori ${\mathrm {Ext}}$ -algebra of G, viewed as a $(Z,Z)$ -bimodule. We show that the locally ringed space $\Xi /\mathcal {R}$ is a projective algebraic curve over ${\mathrm {Spec}}(k)$ with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset U of $\Xi /\mathcal {R}$ , we construct a stable localising subcategory $\mathcal {L}_U$ of the category of smooth k-linear representations of G.
光滑模-p 表示类别中的稳定性
让 $p \geq 5$ 是一个素数,让 $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$ .让 $\Xi = {\mathrm {Spec}}(Z)$ 表示 G 的亲 p 岩崛-赫克代数的中心 Z 的谱,其系数在特征 p 的域 k 中。让 $\mathcal {R} \subset \Xi \times \Xi $ 表示 G 的 pro-p Iwahori ${\mathrm {Ext}}$ 代数的支持,看作 $(Z,Z)$ 双模块。我们证明了局部环形空间 $\Xi /\mathcal {R}$ 是一条在 ${mathrm {Spec}}(k)$ 上的投影代数曲线,它有两个连通分量,并且每个连通分量都是一条投影线链。对于 $\Xi /\mathcal {R}$ 的每个扎里斯基开放子集 U,我们都会为 G 的光滑 k 线性表示范畴构建一个稳定的局部化子范畴 $\mathcal {L}_U$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信