{"title":"L-invariants for cohomological representations of PGL(2) over arbitrary number fields","authors":"Lennart Gehrmann, Maria Rosaria Pati","doi":"10.1017/fms.2024.51","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline1.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a cuspidal, cohomological automorphic representation of an inner form <jats:italic>G</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline2.png\"/> <jats:tex-math> $\\operatorname {{PGL}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a number field <jats:italic>F</jats:italic> of arbitrary signature. Further, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline3.png\"/> <jats:tex-math> $\\mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime of <jats:italic>F</jats:italic> such that <jats:italic>G</jats:italic> is split at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline4.png\"/> <jats:tex-math> $\\mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the local component <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline5.png\"/> <jats:tex-math> $\\pi _{\\mathfrak {p}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline6.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline7.png\"/> <jats:tex-math> $\\mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Steinberg representation. Assuming that the representation is noncritical at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline8.png\"/> <jats:tex-math> $\\mathfrak {p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct automorphic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline9.png\"/> <jats:tex-math> $\\mathcal {L}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariants for the representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline10.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If the number field <jats:italic>F</jats:italic> is totally real, we show that these automorphic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline11.png\"/> <jats:tex-math> $\\mathcal {L}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariants agree with the Fontaine–Mazur <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline12.png\"/> <jats:tex-math> $\\mathcal {L}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariant of the associated <jats:italic>p</jats:italic>-adic Galois representation. This generalizes a recent result of Spieß respectively Rosso and the first named author from the case of parallel weight <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000513_inline13.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to arbitrary cohomological weights.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.51","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\pi $ be a cuspidal, cohomological automorphic representation of an inner form G of $\operatorname {{PGL}}_2$ over a number field F of arbitrary signature. Further, let $\mathfrak {p}$ be a prime of F such that G is split at $\mathfrak {p}$ and the local component $\pi _{\mathfrak {p}}$ of $\pi $ at $\mathfrak {p}$ is the Steinberg representation. Assuming that the representation is noncritical at $\mathfrak {p}$ , we construct automorphic $\mathcal {L}$ -invariants for the representation $\pi $ . If the number field F is totally real, we show that these automorphic $\mathcal {L}$ -invariants agree with the Fontaine–Mazur $\mathcal {L}$ -invariant of the associated p-adic Galois representation. This generalizes a recent result of Spieß respectively Rosso and the first named author from the case of parallel weight $2$ to arbitrary cohomological weights.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.