关于爱森斯坦数列的局部束缚

IF 1.2 2区 数学 Q1 MATHEMATICS
Subhajit Jana, Amitay Kamber
{"title":"关于爱森斯坦数列的局部束缚","authors":"Subhajit Jana, Amitay Kamber","doi":"10.1017/fms.2024.59","DOIUrl":null,"url":null,"abstract":"We study the growth of the local <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline2.png\"/> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a <jats:italic>poly-logarithmic</jats:italic> bound on an average, for a large class of reductive groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis, Lapid and Müller. As applications of our method, we prove the optimal lifting property for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline3.png\"/> <jats:tex-math> $\\mathrm {SL}_n(\\mathbb {Z}/q\\mathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for square-free <jats:italic>q</jats:italic>, as well as the Sarnak–Xue [52] counting property for the principal congruence subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000598_inline4.png\"/> <jats:tex-math> $\\mathrm {SL}_n(\\mathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of square-free level. This makes the recent results of Assing–Blomer [8] unconditional.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"10 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the local -Bound of the Eisenstein series\",\"authors\":\"Subhajit Jana, Amitay Kamber\",\"doi\":\"10.1017/fms.2024.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the growth of the local <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000598_inline2.png\\\"/> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a <jats:italic>poly-logarithmic</jats:italic> bound on an average, for a large class of reductive groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis, Lapid and Müller. As applications of our method, we prove the optimal lifting property for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000598_inline3.png\\\"/> <jats:tex-math> $\\\\mathrm {SL}_n(\\\\mathbb {Z}/q\\\\mathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for square-free <jats:italic>q</jats:italic>, as well as the Sarnak–Xue [52] counting property for the principal congruence subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000598_inline4.png\\\"/> <jats:tex-math> $\\\\mathrm {SL}_n(\\\\mathbb {Z})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of square-free level. This makes the recent results of Assing–Blomer [8] unconditional.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.59\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.59","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了数域上还原群的单元式爱森斯坦数列的局部 $L^2$ -项的增长,以其参数为基础。我们得出了一大类还原群的多对数平均约束。该方法基于阿瑟对迹线公式谱侧的发展,以及菲尼斯、拉皮德和缪勒的观点。作为我们方法的应用,我们证明了无平方q的$\mathrm {SL}_n(\mathbb {Z}/q\mathbb {Z})$的最优提升性质,以及无平方级的$\mathrm {SL}_n(\mathbb {Z})$的主全等子群的萨尔纳克-薛[52]计数性质。这使得阿辛-布鲁默[8]的最新结果成为无条件的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the local -Bound of the Eisenstein series
We study the growth of the local $L^2$ -norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a poly-logarithmic bound on an average, for a large class of reductive groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis, Lapid and Müller. As applications of our method, we prove the optimal lifting property for $\mathrm {SL}_n(\mathbb {Z}/q\mathbb {Z})$ for square-free q, as well as the Sarnak–Xue [52] counting property for the principal congruence subgroup of $\mathrm {SL}_n(\mathbb {Z})$ of square-free level. This makes the recent results of Assing–Blomer [8] unconditional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信