{"title":"光滑模-p 表示类别中的稳定性","authors":"Konstantin Ardakov, Peter Schneider","doi":"10.1017/fms.2024.37","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline2.png\"/> <jats:tex-math> $p \\geq 5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime number, and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline3.png\"/> <jats:tex-math> $G = {\\mathrm {SL}}_2(\\mathbb {Q}_p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline4.png\"/> <jats:tex-math> $\\Xi = {\\mathrm {Spec}}(Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the spectrum of the centre <jats:italic>Z</jats:italic> of the pro-<jats:italic>p</jats:italic> Iwahori–Hecke algebra of <jats:italic>G</jats:italic> with coefficients in a field <jats:italic>k</jats:italic> of characteristic <jats:italic>p</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline5.png\"/> <jats:tex-math> $\\mathcal {R} \\subset \\Xi \\times \\Xi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the support of the pro-<jats:italic>p</jats:italic> Iwahori <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline6.png\"/> <jats:tex-math> ${\\mathrm {Ext}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of <jats:italic>G</jats:italic>, viewed as a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline7.png\"/> <jats:tex-math> $(Z,Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodule. We show that the locally ringed space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline8.png\"/> <jats:tex-math> $\\Xi /\\mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a projective algebraic curve over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline9.png\"/> <jats:tex-math> ${\\mathrm {Spec}}(k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset <jats:italic>U</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline10.png\"/> <jats:tex-math> $\\Xi /\\mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct a stable localising subcategory <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000379_inline11.png\"/> <jats:tex-math> $\\mathcal {L}_U$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the category of smooth <jats:italic>k</jats:italic>-linear representations of <jats:italic>G</jats:italic>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability in the category of smooth mod-p representations of\",\"authors\":\"Konstantin Ardakov, Peter Schneider\",\"doi\":\"10.1017/fms.2024.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline2.png\\\"/> <jats:tex-math> $p \\\\geq 5$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime number, and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline3.png\\\"/> <jats:tex-math> $G = {\\\\mathrm {SL}}_2(\\\\mathbb {Q}_p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline4.png\\\"/> <jats:tex-math> $\\\\Xi = {\\\\mathrm {Spec}}(Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the spectrum of the centre <jats:italic>Z</jats:italic> of the pro-<jats:italic>p</jats:italic> Iwahori–Hecke algebra of <jats:italic>G</jats:italic> with coefficients in a field <jats:italic>k</jats:italic> of characteristic <jats:italic>p</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline5.png\\\"/> <jats:tex-math> $\\\\mathcal {R} \\\\subset \\\\Xi \\\\times \\\\Xi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the support of the pro-<jats:italic>p</jats:italic> Iwahori <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline6.png\\\"/> <jats:tex-math> ${\\\\mathrm {Ext}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-algebra of <jats:italic>G</jats:italic>, viewed as a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline7.png\\\"/> <jats:tex-math> $(Z,Z)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodule. We show that the locally ringed space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline8.png\\\"/> <jats:tex-math> $\\\\Xi /\\\\mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a projective algebraic curve over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline9.png\\\"/> <jats:tex-math> ${\\\\mathrm {Spec}}(k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset <jats:italic>U</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline10.png\\\"/> <jats:tex-math> $\\\\Xi /\\\\mathcal {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we construct a stable localising subcategory <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000379_inline11.png\\\"/> <jats:tex-math> $\\\\mathcal {L}_U$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the category of smooth <jats:italic>k</jats:italic>-linear representations of <jats:italic>G</jats:italic>.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.37\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.37","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 $p \geq 5$ 是一个素数,让 $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$ .让 $\Xi = {\mathrm {Spec}}(Z)$ 表示 G 的亲 p 岩崛-赫克代数的中心 Z 的谱,其系数在特征 p 的域 k 中。让 $\mathcal {R} \subset \Xi \times \Xi $ 表示 G 的 pro-p Iwahori ${\mathrm {Ext}}$ 代数的支持,看作 $(Z,Z)$ 双模块。我们证明了局部环形空间 $\Xi /\mathcal {R}$ 是一条在 ${mathrm {Spec}}(k)$ 上的投影代数曲线,它有两个连通分量,并且每个连通分量都是一条投影线链。对于 $\Xi /\mathcal {R}$ 的每个扎里斯基开放子集 U,我们都会为 G 的光滑 k 线性表示范畴构建一个稳定的局部化子范畴 $\mathcal {L}_U$ 。
Stability in the category of smooth mod-p representations of
Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$ . Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let $\mathcal {R} \subset \Xi \times \Xi $ denote the support of the pro-p Iwahori ${\mathrm {Ext}}$ -algebra of G, viewed as a $(Z,Z)$ -bimodule. We show that the locally ringed space $\Xi /\mathcal {R}$ is a projective algebraic curve over ${\mathrm {Spec}}(k)$ with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset U of $\Xi /\mathcal {R}$ , we construct a stable localising subcategory $\mathcal {L}_U$ of the category of smooth k-linear representations of G.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.