{"title":"Cyclic coverings of genus curves of Sophie Germain type","authors":"J.C. Naranjo, A. Ortega, I. Spelta","doi":"10.1017/fms.2024.42","DOIUrl":"https://doi.org/10.1017/fms.2024.42","url":null,"abstract":"We consider cyclic unramified coverings of degree <jats:italic>d</jats:italic> of irreducible complex smooth genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline2.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order <jats:italic>d</jats:italic>. The rich geometry of the associated Prym map has been studied in several papers, and the cases <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline3.png\"/> <jats:tex-math> $d=2, 3, 5, 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are quite well understood. Nevertheless, very little is known for higher values of <jats:italic>d</jats:italic>. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline4.png\"/> <jats:tex-math> $dge 11$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> prime such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline5.png\"/> <jats:tex-math> $frac {d-1}2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is also prime. We use results of arithmetic nature on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline6.png\"/> <jats:tex-math> $GL_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-type abelian varieties combined with theta-duality techniques.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"52 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Coble quadric","authors":"Vladimiro Benedetti, Michele Bolognesi, Daniele Faenzi, Laurent Manivel","doi":"10.1017/fms.2024.52","DOIUrl":"https://doi.org/10.1017/fms.2024.52","url":null,"abstract":"Given a smooth genus three curve <jats:italic>C</jats:italic>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with trivial determinant embeds in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline1.png\"/> <jats:tex-math> ${mathbb {P}}^8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a hypersurface whose singular locus is the Kummer threefold of <jats:italic>C</jats:italic>; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline2.png\"/> <jats:tex-math> $operatorname {mathrm {SU}}_C(2,L)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with fixed determinant of odd degree <jats:italic>L</jats:italic>, as a subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline3.png\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, each point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline4.png\"/> <jats:tex-math> $pin C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defines a natural embedding of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline5.png\"/> <jats:tex-math> $operatorname {mathrm {SU}}_C(2,{mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline6.png\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline7.png\"/> <jats:tex-math> $operatorname {mathrm {SU}}_C(2,{mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and thus deserves to be coined the Coble quadric of the pointed curve <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"189 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adams’ cobar construction as a monoidal -coalgebra model of the based loop space","authors":"Anibal M. Medina-Mardones, Manuel Rivera","doi":"10.1017/fms.2024.50","DOIUrl":"https://doi.org/10.1017/fms.2024.50","url":null,"abstract":"We prove that the classical map comparing Adams’ cobar construction on the singular chains of a pointed space and the singular cubical chains on its based loop space is a quasi-isomorphism preserving explicitly defined monoidal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000501_inline2.png\"/> <jats:tex-math> $E_infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-coalgebra structures. This contribution extends to its ultimate conclusion a result of Baues, stating that Adams’ map preserves monoidal coalgebra structures.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"37 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Limit pretrees for free group automorphisms: existence","authors":"Jean Pierre Mutanguha","doi":"10.1017/fms.2024.38","DOIUrl":"https://doi.org/10.1017/fms.2024.38","url":null,"abstract":"To any free group automorphism, we associate a real pretree with several nice properties. First, it has a rigid/non-nesting action of the free group with trivial arc stabilizers. Secondly, there is an expanding pretree-automorphism of the real pretree that represents the free group automorphism. Finally and crucially, the loxodromic elements are exactly those whose (conjugacy class) length grows exponentially under iteration of the automorphism; thus, the action on the real pretree is able to detect the growth type of an element. This construction extends the theory of metric trees that has been used to study free group automorphisms. The new idea is that one can equivariantly blow up an isometric action on a real tree with respect to other real trees and get a rigid action on a treelike structure known as a real pretree. Topology plays no role in this construction as all the work is done in the language of pretrees (intervals).","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"21 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimal subdynamics and minimal flows without characteristic measures","authors":"Joshua Frisch, Brandon Seward, Andy Zucker","doi":"10.1017/fms.2024.41","DOIUrl":"https://doi.org/10.1017/fms.2024.41","url":null,"abstract":"Given a countable group <jats:italic>G</jats:italic> and a <jats:italic>G</jats:italic>-flow <jats:italic>X</jats:italic>, a probability measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000410_inline1.png\"/> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:italic>X</jats:italic> is called characteristic if it is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000410_inline2.png\"/> <jats:tex-math> $mathrm {Aut}(X, G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariant. Frisch and Tamuz asked about the existence of a minimal <jats:italic>G</jats:italic>-flow, for any group <jats:italic>G</jats:italic>, which does not admit a characteristic measure. We construct for every countable group <jats:italic>G</jats:italic> such a minimal flow. Along the way, we are motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group <jats:italic>G</jats:italic> and a collection of infinite subgroups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000410_inline3.png\"/> <jats:tex-math> ${Delta _i: iin I}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, when is there a faithful <jats:italic>G</jats:italic>-flow for which every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000410_inline4.png\"/> <jats:tex-math> $Delta _i$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> acts minimally?","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"29 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generic Stability Independence and Treeless Theories","authors":"Itay Kaplan, Nicholas Ramsey, Pierre Simon","doi":"10.1017/fms.2024.35","DOIUrl":"https://doi.org/10.1017/fms.2024.35","url":null,"abstract":"We initiate a systematic study of <jats:italic>generic stability independence</jats:italic> and introduce the class of <jats:italic>treeless theories</jats:italic> in which this notion of independence is particularly well behaved. We show that the class of treeless theories contains both binary theories and stable theories and give several applications of the theory of independence for treeless theories. As a corollary, we show that every binary NSOP<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000355_inline1.png\" /> <jats:tex-math> $_{3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> theory is simple.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"51 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generic Beauville’s Conjecture","authors":"Izzet Coskun, Eric Larson, Isabel Vogt","doi":"10.1017/fms.2024.21","DOIUrl":"https://doi.org/10.1017/fms.2024.21","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000215_inline1.png\" /> <jats:tex-math> $alpha colon X to Y$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000215_inline2.png\" /> <jats:tex-math> $alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is semistable if the genus of <jats:italic>Y</jats:italic> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000215_inline3.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and stable if the genus of <jats:italic>Y</jats:italic> is at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000215_inline4.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove this conjecture if the map <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000215_inline5.png\" /> <jats:tex-math> $alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is general in any component of the Hurwitz space of covers of an arbitrary smooth curve <jats:italic>Y</jats:italic>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"98 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A remark on Gibbs measures with log-correlated Gaussian fields","authors":"Tadahiro Oh, Kihoon Seong, Leonardo Tolomeo","doi":"10.1017/fms.2024.28","DOIUrl":"https://doi.org/10.1017/fms.2024.28","url":null,"abstract":"We study Gibbs measures with log-correlated base Gaussian fields on the <jats:italic>d</jats:italic>-dimensional torus. In the defocusing case, the construction of such Gibbs measures follows from Nelson’s argument. In this paper, we consider the focusing case with a quartic interaction. Using the variational formulation, we prove nonnormalizability of the Gibbs measure. When <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000288_inline1.png\" /> <jats:tex-math> $d = 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, our argument provides an alternative proof of the nonnormalizability result for the focusing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000288_inline2.png\" /> <jats:tex-math> $Phi ^4_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-measure by Brydges and Slade (1996). Furthermore, we provide a precise rate of divergence, where the constant is characterized by the optimal constant for a certain Bernstein’s inequality on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000288_inline3.png\" /> <jats:tex-math> $mathbb R^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also go over the construction of the focusing Gibbs measure with a cubic interaction. In the appendices, we present (a) nonnormalizability of the Gibbs measure for the two-dimensional Zakharov system and (b) the construction of focusing quartic Gibbs measures with smoother base Gaussian measures, showing a critical nature of the log-correlated Gibbs measure with a focusing quartic interaction.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"96 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cohomological Descent for Faltings Ringed Topos","authors":"Tongmu He","doi":"10.1017/fms.2024.26","DOIUrl":"https://doi.org/10.1017/fms.2024.26","url":null,"abstract":"<p>Faltings ringed topos, the keystone of Faltings’ approach to <span>p</span>-adic Hodge theory for a smooth variety over a local field, relies on the choice of an integral model, and its good properties depend on the (logarithmic) smoothness of this model. Inspired by Deligne’s approach to classical Hodge theory for singular varieties, we establish a cohomological descent result for the structural sheaf of Faltings topos, which makes it possible to extend Faltings’ approach to any integral model, that is, without any smoothness assumption. An essential ingredient of our proof is a variation of Bhatt–Scholze’s arc-descent of perfectoid rings.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"138 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}