{"title":"Globally F-regular type of the moduli spaces of parabolic symplectic/orthogonal bundles on curves","authors":"Jianping Wang, Xueqing Wen","doi":"10.1017/fms.2024.57","DOIUrl":"https://doi.org/10.1017/fms.2024.57","url":null,"abstract":"We prove that the moduli spaces of parabolic symplectic/orthogonal bundles on a smooth curve are globally F-regular type. As a consequence, all higher cohomologies of the theta line bundle vanish. During the proof, we develop a method to estimate codimension.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strict positivity of Kähler–Einstein currents","authors":"Vincent Guedj, Henri Guenancia, Ahmed Zeriahi","doi":"10.1017/fms.2024.54","DOIUrl":"https://doi.org/10.1017/fms.2024.54","url":null,"abstract":"Kähler–Einstein currents, also known as singular Kähler–Einstein metrics, have been introduced and constructed a little over a decade ago. These currents live on mildly singular compact Kähler spaces <jats:italic>X</jats:italic> and their two defining properties are the following: They are genuine Kähler–Einstein metrics on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000549_inline1.png\"/> <jats:tex-math> $X_{mathrm {reg}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and they admit local bounded potentials near the singularities of <jats:italic>X</jats:italic>. In this note, we show that these currents dominate a Kähler form near the singular locus, when either <jats:italic>X</jats:italic> admits a global smoothing, or when <jats:italic>X</jats:italic> has isolated smoothable singularities. Our results apply to klt pairs and allow us to show that if <jats:italic>X</jats:italic> is any compact Kähler space of dimension three with log terminal singularities, then any singular Kähler–Einstein metric of nonpositive curvature dominates a Kähler form.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the weight zero compactly supported cohomology of","authors":"Madeline Brandt, Melody Chan, Siddarth Kannan","doi":"10.1017/fms.2024.53","DOIUrl":"https://doi.org/10.1017/fms.2024.53","url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline2.png\"/> <jats:tex-math> $gge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline3.png\"/> <jats:tex-math> $nge 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline4.png\"/> <jats:tex-math> $mathcal {H}_{g,n}subset mathcal {M}_{g,n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the complex moduli stack of <jats:italic>n</jats:italic>-marked smooth hyperelliptic curves of genus <jats:italic>g</jats:italic>. A normal crossings compactification of this space is provided by the theory of pointed admissible <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline5.png\"/> <jats:tex-math> $mathbb {Z}/2mathbb {Z}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline6.png\"/> <jats:tex-math> $mathcal {H}_{g, n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using this graph complex, we give a sum-over-graphs formula for the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline7.png\"/> <jats:tex-math> $S_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-equivariant weight zero compactly supported Euler characteristic of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline8.png\"/> <jats:tex-math> $mathcal {H}_{g, n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This formula allows for the computer-aided calculation, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline9.png\"/> <jats:tex-math> $gle 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, of the generating function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline10.png\"/> <jats:tex-math> $mathsf {h}_g$ </jats:tex-math> </jats:alternativ","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Orthogonality relations for deep level Deligne–Lusztig schemes of Coxeter type","authors":"Olivier Dudas, Alexander B. Ivanov","doi":"10.1017/fms.2024.55","DOIUrl":"https://doi.org/10.1017/fms.2024.55","url":null,"abstract":"In this paper, we prove some orthogonality relations for representations arising from deep level Deligne–Lusztig schemes of Coxeter type. This generalizes previous results of Lusztig [Lus04], and of Chan and the second author [CI21b]. Applications include the study of smooth representations of <jats:italic>p</jats:italic>-adic groups in the cohomology of <jats:italic>p</jats:italic>-adic Deligne–Lusztig spaces and their relation to the local Langlands correspondences. Also, the geometry of deep level Deligne–Lusztig schemes gets accessible, in the spirit of Lusztig’s work [Lus76].","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On divisorial stability of finite covers","authors":"Ruadhaí Dervan, Theodoros Stylianos Papazachariou","doi":"10.1017/fms.2024.47","DOIUrl":"https://doi.org/10.1017/fms.2024.47","url":null,"abstract":"Divisorial stability of a polarised variety is a stronger – but conjecturally equivalent – variant of uniform K-stability introduced by Boucksom–Jonsson. Whereas uniform K-stability is defined in terms of test configurations, divisorial stability is defined in terms of convex combinations of divisorial valuations on the variety. We consider the behaviour of divisorial stability under finite group actions and prove that equivariant divisorial stability of a polarised variety is equivalent to log divisorial stability of its quotient. We use this and an interpolation technique to give a general construction of equivariantly divisorially stable polarised varieties.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyclic coverings of genus curves of Sophie Germain type","authors":"J.C. Naranjo, A. Ortega, I. Spelta","doi":"10.1017/fms.2024.42","DOIUrl":"https://doi.org/10.1017/fms.2024.42","url":null,"abstract":"We consider cyclic unramified coverings of degree <jats:italic>d</jats:italic> of irreducible complex smooth genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline2.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order <jats:italic>d</jats:italic>. The rich geometry of the associated Prym map has been studied in several papers, and the cases <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline3.png\"/> <jats:tex-math> $d=2, 3, 5, 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are quite well understood. Nevertheless, very little is known for higher values of <jats:italic>d</jats:italic>. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline4.png\"/> <jats:tex-math> $dge 11$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> prime such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline5.png\"/> <jats:tex-math> $frac {d-1}2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is also prime. We use results of arithmetic nature on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline6.png\"/> <jats:tex-math> $GL_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-type abelian varieties combined with theta-duality techniques.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Coble quadric","authors":"Vladimiro Benedetti, Michele Bolognesi, Daniele Faenzi, Laurent Manivel","doi":"10.1017/fms.2024.52","DOIUrl":"https://doi.org/10.1017/fms.2024.52","url":null,"abstract":"Given a smooth genus three curve <jats:italic>C</jats:italic>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with trivial determinant embeds in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline1.png\"/> <jats:tex-math> ${mathbb {P}}^8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a hypersurface whose singular locus is the Kummer threefold of <jats:italic>C</jats:italic>; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline2.png\"/> <jats:tex-math> $operatorname {mathrm {SU}}_C(2,L)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with fixed determinant of odd degree <jats:italic>L</jats:italic>, as a subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline3.png\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, each point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline4.png\"/> <jats:tex-math> $pin C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defines a natural embedding of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline5.png\"/> <jats:tex-math> $operatorname {mathrm {SU}}_C(2,{mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline6.png\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline7.png\"/> <jats:tex-math> $operatorname {mathrm {SU}}_C(2,{mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and thus deserves to be coined the Coble quadric of the pointed curve <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasimaps to moduli spaces of sheaves on a surface","authors":"Denis Nesterov","doi":"10.1017/fms.2024.48","DOIUrl":"https://doi.org/10.1017/fms.2024.48","url":null,"abstract":"In this article, we study quasimaps to moduli spaces of sheaves on a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline2.png\"/> <jats:tex-math> $K3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> surface <jats:italic>S</jats:italic>. We construct a surjective cosection of the obstruction theory of moduli spaces of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline3.png\"/> <jats:tex-math> $epsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-stable quasimaps. We then establish reduced wall-crossing formulas which relate the reduced Gromov–Witten theory of moduli spaces of sheaves on <jats:italic>S</jats:italic> and the reduced Donaldson–Thomas theory of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline4.png\"/> <jats:tex-math> $Stimes C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>C</jats:italic> is a nodal curve. As applications, we prove the Hilbert-schemes part of the Igusa cusp form conjecture; higher-rank/rank-one Donaldson–Thomas correspondence with relative insertions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline5.png\"/> <jats:tex-math> $Stimes C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline6.png\"/> <jats:tex-math> $g(C)leq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; Donaldson–Thomas/Pandharipande–Thomas correspondence with relative insertions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline7.png\"/> <jats:tex-math> $Stimes mathbb {P}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adams’ cobar construction as a monoidal -coalgebra model of the based loop space","authors":"Anibal M. Medina-Mardones, Manuel Rivera","doi":"10.1017/fms.2024.50","DOIUrl":"https://doi.org/10.1017/fms.2024.50","url":null,"abstract":"We prove that the classical map comparing Adams’ cobar construction on the singular chains of a pointed space and the singular cubical chains on its based loop space is a quasi-isomorphism preserving explicitly defined monoidal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000501_inline2.png\"/> <jats:tex-math> $E_infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-coalgebra structures. This contribution extends to its ultimate conclusion a result of Baues, stating that Adams’ map preserves monoidal coalgebra structures.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Limit pretrees for free group automorphisms: existence","authors":"Jean Pierre Mutanguha","doi":"10.1017/fms.2024.38","DOIUrl":"https://doi.org/10.1017/fms.2024.38","url":null,"abstract":"To any free group automorphism, we associate a real pretree with several nice properties. First, it has a rigid/non-nesting action of the free group with trivial arc stabilizers. Secondly, there is an expanding pretree-automorphism of the real pretree that represents the free group automorphism. Finally and crucially, the loxodromic elements are exactly those whose (conjugacy class) length grows exponentially under iteration of the automorphism; thus, the action on the real pretree is able to detect the growth type of an element. This construction extends the theory of metric trees that has been used to study free group automorphisms. The new idea is that one can equivariantly blow up an isometric action on a real tree with respect to other real trees and get a rigid action on a treelike structure known as a real pretree. Topology plays no role in this construction as all the work is done in the language of pretrees (intervals).","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}