{"title":"曲面上的模空间准映射","authors":"Denis Nesterov","doi":"10.1017/fms.2024.48","DOIUrl":null,"url":null,"abstract":"In this article, we study quasimaps to moduli spaces of sheaves on a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline2.png\"/> <jats:tex-math> $K3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> surface <jats:italic>S</jats:italic>. We construct a surjective cosection of the obstruction theory of moduli spaces of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline3.png\"/> <jats:tex-math> $\\epsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-stable quasimaps. We then establish reduced wall-crossing formulas which relate the reduced Gromov–Witten theory of moduli spaces of sheaves on <jats:italic>S</jats:italic> and the reduced Donaldson–Thomas theory of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline4.png\"/> <jats:tex-math> $S\\times C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>C</jats:italic> is a nodal curve. As applications, we prove the Hilbert-schemes part of the Igusa cusp form conjecture; higher-rank/rank-one Donaldson–Thomas correspondence with relative insertions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline5.png\"/> <jats:tex-math> $S\\times C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline6.png\"/> <jats:tex-math> $g(C)\\leq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; Donaldson–Thomas/Pandharipande–Thomas correspondence with relative insertions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000483_inline7.png\"/> <jats:tex-math> $S\\times \\mathbb {P}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasimaps to moduli spaces of sheaves on a surface\",\"authors\":\"Denis Nesterov\",\"doi\":\"10.1017/fms.2024.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study quasimaps to moduli spaces of sheaves on a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000483_inline2.png\\\"/> <jats:tex-math> $K3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> surface <jats:italic>S</jats:italic>. We construct a surjective cosection of the obstruction theory of moduli spaces of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000483_inline3.png\\\"/> <jats:tex-math> $\\\\epsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-stable quasimaps. We then establish reduced wall-crossing formulas which relate the reduced Gromov–Witten theory of moduli spaces of sheaves on <jats:italic>S</jats:italic> and the reduced Donaldson–Thomas theory of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000483_inline4.png\\\"/> <jats:tex-math> $S\\\\times C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>C</jats:italic> is a nodal curve. As applications, we prove the Hilbert-schemes part of the Igusa cusp form conjecture; higher-rank/rank-one Donaldson–Thomas correspondence with relative insertions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000483_inline5.png\\\"/> <jats:tex-math> $S\\\\times C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000483_inline6.png\\\"/> <jats:tex-math> $g(C)\\\\leq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; Donaldson–Thomas/Pandharipande–Thomas correspondence with relative insertions on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000483_inline7.png\\\"/> <jats:tex-math> $S\\\\times \\\\mathbb {P}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.48\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.48","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们研究了$K3$曲面S上剪子的模空间的准映射。我们构建了$\epsilon$稳定准映射的模空间的阻塞理论的投射共截。然后,我们建立了还原壁交公式,将 S 上剪切的模空间的还原格罗莫夫-维滕理论与 $S\times C$ 的还原唐纳森-托马斯理论联系起来,其中 C 是一条节点曲线。作为应用,我们证明了伊古萨尖顶形式猜想的希尔伯特结构部分;如果 $g(C)\leq 1$ ,在 $S\times C$ 上与相对插入的高阶/秩一唐纳森-托马斯对应关系;在 $S\times \mathbb {P}^1$ 上与相对插入的唐纳森-托马斯/潘达里潘德-托马斯对应关系。
Quasimaps to moduli spaces of sheaves on a surface
In this article, we study quasimaps to moduli spaces of sheaves on a $K3$ surface S. We construct a surjective cosection of the obstruction theory of moduli spaces of $\epsilon $ -stable quasimaps. We then establish reduced wall-crossing formulas which relate the reduced Gromov–Witten theory of moduli spaces of sheaves on S and the reduced Donaldson–Thomas theory of $S\times C$ , where C is a nodal curve. As applications, we prove the Hilbert-schemes part of the Igusa cusp form conjecture; higher-rank/rank-one Donaldson–Thomas correspondence with relative insertions on $S\times C$ , if $g(C)\leq 1$ ; Donaldson–Thomas/Pandharipande–Thomas correspondence with relative insertions on $S\times \mathbb {P}^1$ .
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.