{"title":"论有限封面的分裂稳定性","authors":"Ruadhaí Dervan, Theodoros Stylianos Papazachariou","doi":"10.1017/fms.2024.47","DOIUrl":null,"url":null,"abstract":"Divisorial stability of a polarised variety is a stronger – but conjecturally equivalent – variant of uniform K-stability introduced by Boucksom–Jonsson. Whereas uniform K-stability is defined in terms of test configurations, divisorial stability is defined in terms of convex combinations of divisorial valuations on the variety. We consider the behaviour of divisorial stability under finite group actions and prove that equivariant divisorial stability of a polarised variety is equivalent to log divisorial stability of its quotient. We use this and an interpolation technique to give a general construction of equivariantly divisorially stable polarised varieties.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On divisorial stability of finite covers\",\"authors\":\"Ruadhaí Dervan, Theodoros Stylianos Papazachariou\",\"doi\":\"10.1017/fms.2024.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divisorial stability of a polarised variety is a stronger – but conjecturally equivalent – variant of uniform K-stability introduced by Boucksom–Jonsson. Whereas uniform K-stability is defined in terms of test configurations, divisorial stability is defined in terms of convex combinations of divisorial valuations on the variety. We consider the behaviour of divisorial stability under finite group actions and prove that equivariant divisorial stability of a polarised variety is equivalent to log divisorial stability of its quotient. We use this and an interpolation technique to give a general construction of equivariantly divisorially stable polarised varieties.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.47\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.47","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
极化变元的除法稳定性是布克索姆-琼森(Boucksom-Jonsson)提出的均匀 K 稳定性的一个更强--但在猜想上等价--的变种。统一 K 稳定性是根据检验配置定义的,而分裂稳定性则是根据极化变体上分裂值的凸组合定义的。我们考虑了有限群作用下的分裂稳定性行为,并证明了极化变体的等变分裂稳定性等价于其商数的对数分裂稳定性。我们利用这一点和插值技术给出了等变分稳定极化变种的一般构造。
Divisorial stability of a polarised variety is a stronger – but conjecturally equivalent – variant of uniform K-stability introduced by Boucksom–Jonsson. Whereas uniform K-stability is defined in terms of test configurations, divisorial stability is defined in terms of convex combinations of divisorial valuations on the variety. We consider the behaviour of divisorial stability under finite group actions and prove that equivariant divisorial stability of a polarised variety is equivalent to log divisorial stability of its quotient. We use this and an interpolation technique to give a general construction of equivariantly divisorially stable polarised varieties.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.