{"title":"科布尔四边形","authors":"Vladimiro Benedetti, Michele Bolognesi, Daniele Faenzi, Laurent Manivel","doi":"10.1017/fms.2024.52","DOIUrl":null,"url":null,"abstract":"Given a smooth genus three curve <jats:italic>C</jats:italic>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with trivial determinant embeds in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline1.png\"/> <jats:tex-math> ${\\mathbb {P}}^8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a hypersurface whose singular locus is the Kummer threefold of <jats:italic>C</jats:italic>; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline2.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {SU}}_C(2,L)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with fixed determinant of odd degree <jats:italic>L</jats:italic>, as a subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline3.png\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, each point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline4.png\"/> <jats:tex-math> $p\\in C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defines a natural embedding of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline5.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {SU}}_C(2,{\\mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline6.png\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline7.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {SU}}_C(2,{\\mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and thus deserves to be coined the Coble quadric of the pointed curve <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline8.png\"/> <jats:tex-math> $(C,p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Coble quadric\",\"authors\":\"Vladimiro Benedetti, Michele Bolognesi, Daniele Faenzi, Laurent Manivel\",\"doi\":\"10.1017/fms.2024.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a smooth genus three curve <jats:italic>C</jats:italic>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with trivial determinant embeds in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000525_inline1.png\\\"/> <jats:tex-math> ${\\\\mathbb {P}}^8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a hypersurface whose singular locus is the Kummer threefold of <jats:italic>C</jats:italic>; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000525_inline2.png\\\"/> <jats:tex-math> $\\\\operatorname {\\\\mathrm {SU}}_C(2,L)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with fixed determinant of odd degree <jats:italic>L</jats:italic>, as a subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000525_inline3.png\\\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, each point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000525_inline4.png\\\"/> <jats:tex-math> $p\\\\in C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defines a natural embedding of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000525_inline5.png\\\"/> <jats:tex-math> $\\\\operatorname {\\\\mathrm {SU}}_C(2,{\\\\mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000525_inline6.png\\\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000525_inline7.png\\\"/> <jats:tex-math> $\\\\operatorname {\\\\mathrm {SU}}_C(2,{\\\\mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and thus deserves to be coined the Coble quadric of the pointed curve <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000525_inline8.png\\\"/> <jats:tex-math> $(C,p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.52\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.52","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Given a smooth genus three curve C, the moduli space of rank two stable vector bundles on C with trivial determinant embeds in ${\mathbb {P}}^8$ as a hypersurface whose singular locus is the Kummer threefold of C; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover $\operatorname {\mathrm {SU}}_C(2,L)$ , the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree L, as a subvariety of $G(2,8)$ . In fact, each point $p\in C$ defines a natural embedding of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ in $G(2,8)$ . We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ and thus deserves to be coined the Coble quadric of the pointed curve $(C,p)$ .
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.