凯勒-爱因斯坦电流的严格正向性

IF 1.2 2区 数学 Q1 MATHEMATICS
Vincent Guedj, Henri Guenancia, Ahmed Zeriahi
{"title":"凯勒-爱因斯坦电流的严格正向性","authors":"Vincent Guedj, Henri Guenancia, Ahmed Zeriahi","doi":"10.1017/fms.2024.54","DOIUrl":null,"url":null,"abstract":"Kähler–Einstein currents, also known as singular Kähler–Einstein metrics, have been introduced and constructed a little over a decade ago. These currents live on mildly singular compact Kähler spaces <jats:italic>X</jats:italic> and their two defining properties are the following: They are genuine Kähler–Einstein metrics on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000549_inline1.png\"/> <jats:tex-math> $X_{\\mathrm {reg}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and they admit local bounded potentials near the singularities of <jats:italic>X</jats:italic>. In this note, we show that these currents dominate a Kähler form near the singular locus, when either <jats:italic>X</jats:italic> admits a global smoothing, or when <jats:italic>X</jats:italic> has isolated smoothable singularities. Our results apply to klt pairs and allow us to show that if <jats:italic>X</jats:italic> is any compact Kähler space of dimension three with log terminal singularities, then any singular Kähler–Einstein metric of nonpositive curvature dominates a Kähler form.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strict positivity of Kähler–Einstein currents\",\"authors\":\"Vincent Guedj, Henri Guenancia, Ahmed Zeriahi\",\"doi\":\"10.1017/fms.2024.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kähler–Einstein currents, also known as singular Kähler–Einstein metrics, have been introduced and constructed a little over a decade ago. These currents live on mildly singular compact Kähler spaces <jats:italic>X</jats:italic> and their two defining properties are the following: They are genuine Kähler–Einstein metrics on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000549_inline1.png\\\"/> <jats:tex-math> $X_{\\\\mathrm {reg}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and they admit local bounded potentials near the singularities of <jats:italic>X</jats:italic>. In this note, we show that these currents dominate a Kähler form near the singular locus, when either <jats:italic>X</jats:italic> admits a global smoothing, or when <jats:italic>X</jats:italic> has isolated smoothable singularities. Our results apply to klt pairs and allow us to show that if <jats:italic>X</jats:italic> is any compact Kähler space of dimension three with log terminal singularities, then any singular Kähler–Einstein metric of nonpositive curvature dominates a Kähler form.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.54\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.54","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

凯勒-爱因斯坦流(又称奇异凯勒-爱因斯坦度量)是在十多年前被提出和构建的。这些气流存在于轻度奇异紧凑的凯勒空间 X 上,它们的两个决定性性质如下:它们是 $X_{\mathrm {reg}}$ 上真正的凯勒-爱因斯坦度量,而且它们在 X 的奇点附近承认局部有界势能。在本论文中,我们证明了当 X 承认全局平滑或 X 具有孤立的可平滑奇点时,这些电流在奇点位置附近支配凯勒形式。我们的结果适用于 klt 对,并允许我们证明,如果 X 是任何具有对数末端奇点的三维紧凑凯勒空间,那么任何非正曲率的凯勒-爱因斯坦奇异度量都会支配一个凯勒形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strict positivity of Kähler–Einstein currents
Kähler–Einstein currents, also known as singular Kähler–Einstein metrics, have been introduced and constructed a little over a decade ago. These currents live on mildly singular compact Kähler spaces X and their two defining properties are the following: They are genuine Kähler–Einstein metrics on $X_{\mathrm {reg}}$ , and they admit local bounded potentials near the singularities of X. In this note, we show that these currents dominate a Kähler form near the singular locus, when either X admits a global smoothing, or when X has isolated smoothable singularities. Our results apply to klt pairs and allow us to show that if X is any compact Kähler space of dimension three with log terminal singularities, then any singular Kähler–Einstein metric of nonpositive curvature dominates a Kähler form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信