{"title":"关于权重为零的紧凑支撑同调的","authors":"Madeline Brandt, Melody Chan, Siddarth Kannan","doi":"10.1017/fms.2024.53","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline2.png\"/> <jats:tex-math> $g\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline3.png\"/> <jats:tex-math> $n\\ge 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline4.png\"/> <jats:tex-math> $\\mathcal {H}_{g,n}\\subset \\mathcal {M}_{g,n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the complex moduli stack of <jats:italic>n</jats:italic>-marked smooth hyperelliptic curves of genus <jats:italic>g</jats:italic>. A normal crossings compactification of this space is provided by the theory of pointed admissible <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline5.png\"/> <jats:tex-math> $\\mathbb {Z}/2\\mathbb {Z}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline6.png\"/> <jats:tex-math> $\\mathcal {H}_{g, n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using this graph complex, we give a sum-over-graphs formula for the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline7.png\"/> <jats:tex-math> $S_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-equivariant weight zero compactly supported Euler characteristic of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline8.png\"/> <jats:tex-math> $\\mathcal {H}_{g, n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This formula allows for the computer-aided calculation, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline9.png\"/> <jats:tex-math> $g\\le 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, of the generating function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline10.png\"/> <jats:tex-math> $\\mathsf {h}_g$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for these equivariant Euler characteristics for all <jats:italic>n</jats:italic>. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissible <jats:italic>G</jats:italic>-covers of genus zero curves, when <jats:italic>G</jats:italic> is abelian, as a symmetric <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline11.png\"/> <jats:tex-math> $\\Delta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-complex. We use these complexes to generalize our formula for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000537_inline12.png\"/> <jats:tex-math> $\\mathsf {h}_g$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to moduli spaces of <jats:italic>n</jats:italic>-pointed smooth abelian covers of genus zero curves.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the weight zero compactly supported cohomology of\",\"authors\":\"Madeline Brandt, Melody Chan, Siddarth Kannan\",\"doi\":\"10.1017/fms.2024.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline2.png\\\"/> <jats:tex-math> $g\\\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline3.png\\\"/> <jats:tex-math> $n\\\\ge 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline4.png\\\"/> <jats:tex-math> $\\\\mathcal {H}_{g,n}\\\\subset \\\\mathcal {M}_{g,n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the complex moduli stack of <jats:italic>n</jats:italic>-marked smooth hyperelliptic curves of genus <jats:italic>g</jats:italic>. A normal crossings compactification of this space is provided by the theory of pointed admissible <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline5.png\\\"/> <jats:tex-math> $\\\\mathbb {Z}/2\\\\mathbb {Z}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline6.png\\\"/> <jats:tex-math> $\\\\mathcal {H}_{g, n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using this graph complex, we give a sum-over-graphs formula for the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline7.png\\\"/> <jats:tex-math> $S_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-equivariant weight zero compactly supported Euler characteristic of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline8.png\\\"/> <jats:tex-math> $\\\\mathcal {H}_{g, n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This formula allows for the computer-aided calculation, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline9.png\\\"/> <jats:tex-math> $g\\\\le 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, of the generating function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline10.png\\\"/> <jats:tex-math> $\\\\mathsf {h}_g$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for these equivariant Euler characteristics for all <jats:italic>n</jats:italic>. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissible <jats:italic>G</jats:italic>-covers of genus zero curves, when <jats:italic>G</jats:italic> is abelian, as a symmetric <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline11.png\\\"/> <jats:tex-math> $\\\\Delta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-complex. We use these complexes to generalize our formula for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000537_inline12.png\\\"/> <jats:tex-math> $\\\\mathsf {h}_g$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to moduli spaces of <jats:italic>n</jats:italic>-pointed smooth abelian covers of genus zero curves.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.53\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.53","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于$g/ge 2$和$n/ge 0$,让$\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$ 表示属g的n标记光滑超椭圆曲线的复模数堆栈。尖可容许$\mathbb {Z}/2\mathbb {Z}$ -覆盖的理论提供了这个空间的法向交叉紧凑性。我们明确地确定了由此产生的对偶复数,并以此定义了一个图复数,它可以计算 $\mathcal {H}_{g, n}$ 的权重为零的紧凑支持同调。利用这个图复数,我们给出了 $S_n$ 的权重零紧凑支持的 $\mathcal {H}_{g, n}$ 的欧拉特征的过图总和公式。这个公式允许计算机辅助计算每个 $g\le 7$ 的生成函数 $mathsf {h}_g$ 对于所有 n 的这些等变欧拉特征。更一般地说,当 G 是无性的时候,我们确定在任何零属曲线的尖可容许 G 笼的模空间中边界的对偶复数为对称的 $\Delta $ 复数。我们利用这些复数将我们的 $\mathsf {h}_g$ 公式推广到零属曲线的 n 点光滑无常盖的模空间。
On the weight zero compactly supported cohomology of
For $g\ge 2$ and $n\ge 0$ , let $\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$ denote the complex moduli stack of n-marked smooth hyperelliptic curves of genus g. A normal crossings compactification of this space is provided by the theory of pointed admissible $\mathbb {Z}/2\mathbb {Z}$ -covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of $\mathcal {H}_{g, n}$ . Using this graph complex, we give a sum-over-graphs formula for the $S_n$ -equivariant weight zero compactly supported Euler characteristic of $\mathcal {H}_{g, n}$ . This formula allows for the computer-aided calculation, for each $g\le 7$ , of the generating function $\mathsf {h}_g$ for these equivariant Euler characteristics for all n. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissible G-covers of genus zero curves, when G is abelian, as a symmetric $\Delta $ -complex. We use these complexes to generalize our formula for $\mathsf {h}_g$ to moduli spaces of n-pointed smooth abelian covers of genus zero curves.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.