{"title":"Cyclic coverings of genus curves of Sophie Germain type","authors":"J.C. Naranjo, A. Ortega, I. Spelta","doi":"10.1017/fms.2024.42","DOIUrl":null,"url":null,"abstract":"We consider cyclic unramified coverings of degree <jats:italic>d</jats:italic> of irreducible complex smooth genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline2.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order <jats:italic>d</jats:italic>. The rich geometry of the associated Prym map has been studied in several papers, and the cases <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline3.png\"/> <jats:tex-math> $d=2, 3, 5, 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are quite well understood. Nevertheless, very little is known for higher values of <jats:italic>d</jats:italic>. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline4.png\"/> <jats:tex-math> $d\\ge 11$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> prime such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline5.png\"/> <jats:tex-math> $\\frac {d-1}2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is also prime. We use results of arithmetic nature on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline6.png\"/> <jats:tex-math> $GL_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-type abelian varieties combined with theta-duality techniques.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.42","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider cyclic unramified coverings of degree d of irreducible complex smooth genus $2$ curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order d. The rich geometry of the associated Prym map has been studied in several papers, and the cases $d=2, 3, 5, 7$ are quite well understood. Nevertheless, very little is known for higher values of d. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for $d\ge 11$ prime such that $\frac {d-1}2$ is also prime. We use results of arithmetic nature on $GL_2$ -type abelian varieties combined with theta-duality techniques.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.