The Coble quadric

IF 1.2 2区 数学 Q1 MATHEMATICS
Vladimiro Benedetti, Michele Bolognesi, Daniele Faenzi, Laurent Manivel
{"title":"The Coble quadric","authors":"Vladimiro Benedetti, Michele Bolognesi, Daniele Faenzi, Laurent Manivel","doi":"10.1017/fms.2024.52","DOIUrl":null,"url":null,"abstract":"Given a smooth genus three curve <jats:italic>C</jats:italic>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with trivial determinant embeds in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline1.png\"/> <jats:tex-math> ${\\mathbb {P}}^8$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a hypersurface whose singular locus is the Kummer threefold of <jats:italic>C</jats:italic>; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline2.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {SU}}_C(2,L)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the moduli space of rank two stable vector bundles on <jats:italic>C</jats:italic> with fixed determinant of odd degree <jats:italic>L</jats:italic>, as a subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline3.png\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, each point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline4.png\"/> <jats:tex-math> $p\\in C$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defines a natural embedding of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline5.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {SU}}_C(2,{\\mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline6.png\"/> <jats:tex-math> $G(2,8)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline7.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {SU}}_C(2,{\\mathcal {O}}(p))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and thus deserves to be coined the Coble quadric of the pointed curve <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000525_inline8.png\"/> <jats:tex-math> $(C,p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.52","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a smooth genus three curve C, the moduli space of rank two stable vector bundles on C with trivial determinant embeds in ${\mathbb {P}}^8$ as a hypersurface whose singular locus is the Kummer threefold of C; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover $\operatorname {\mathrm {SU}}_C(2,L)$ , the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree L, as a subvariety of $G(2,8)$ . In fact, each point $p\in C$ defines a natural embedding of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ in $G(2,8)$ . We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ and thus deserves to be coined the Coble quadric of the pointed curve $(C,p)$ .
科布尔四边形
给定一条光滑的三属曲线 C,C 上具有微小行列式的二阶稳定向量束的模空间嵌入 ${mathbb {P}}^8$ 为一个超曲面,其奇异点是 C 的库默三重;这个超曲面就是柯布四元组。格鲁森、萨姆和韦曼意识到这个四元数可以由八变量的一般偏斜对称四元数构造。利用四元数中包含的线段,我们证明类似的构造可以将 C 上具有奇数阶固定行列式的二阶稳定向量束的模空间 $operatorname {\mathrm {SU}}_C(2,L)$ 恢复为 $G(2,8)$ 的子域。事实上,C$中的每个点$p\ 都定义了$G(2,8)$中$operatorname {mathrm {SU}}_C(2,{mathcal {O}}(p))$ 的自然嵌入。我们证明,对于一般的这种嵌入,存在一个独特的格拉斯曼二次截面,它恰好沿着 $\operatorname {mathrm {SU}}_C(2,{\mathcal {O}}(p))$ 的图像是奇异的,因此应该被称为尖曲线 $(C,p)$ 的 Coble quadric 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信