索菲-日耳曼型属曲线的循环覆盖

IF 1.2 2区 数学 Q1 MATHEMATICS
J.C. Naranjo, A. Ortega, I. Spelta
{"title":"索菲-日耳曼型属曲线的循环覆盖","authors":"J.C. Naranjo, A. Ortega, I. Spelta","doi":"10.1017/fms.2024.42","DOIUrl":null,"url":null,"abstract":"We consider cyclic unramified coverings of degree <jats:italic>d</jats:italic> of irreducible complex smooth genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline2.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order <jats:italic>d</jats:italic>. The rich geometry of the associated Prym map has been studied in several papers, and the cases <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline3.png\"/> <jats:tex-math> $d=2, 3, 5, 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are quite well understood. Nevertheless, very little is known for higher values of <jats:italic>d</jats:italic>. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline4.png\"/> <jats:tex-math> $d\\ge 11$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> prime such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline5.png\"/> <jats:tex-math> $\\frac {d-1}2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is also prime. We use results of arithmetic nature on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000422_inline6.png\"/> <jats:tex-math> $GL_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-type abelian varieties combined with theta-duality techniques.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic coverings of genus curves of Sophie Germain type\",\"authors\":\"J.C. Naranjo, A. Ortega, I. Spelta\",\"doi\":\"10.1017/fms.2024.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider cyclic unramified coverings of degree <jats:italic>d</jats:italic> of irreducible complex smooth genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000422_inline2.png\\\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order <jats:italic>d</jats:italic>. The rich geometry of the associated Prym map has been studied in several papers, and the cases <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000422_inline3.png\\\"/> <jats:tex-math> $d=2, 3, 5, 7$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are quite well understood. Nevertheless, very little is known for higher values of <jats:italic>d</jats:italic>. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000422_inline4.png\\\"/> <jats:tex-math> $d\\\\ge 11$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> prime such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000422_inline5.png\\\"/> <jats:tex-math> $\\\\frac {d-1}2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is also prime. We use results of arithmetic nature on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000422_inline6.png\\\"/> <jats:tex-math> $GL_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-type abelian varieties combined with theta-duality techniques.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.42\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.42","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了不可还原的复杂光滑 2$ 属曲线的 d 阶循环无ramified 覆盖及其相应的 Prym 变项。它们提供了具有 d 阶自形性的极化无性变种的自然范例。相关普赖姆图的丰富几何学内容已在多篇论文中进行了研究,并且对 $d=2、3、5、7$ 的情况有了很好的理解。然而,对于更高的 d 值,我们所知甚少。在本文中,我们将研究覆盖是否可以从其 Prym 变体中重建,也就是说,通用 Prym Torelli 定理对于这些覆盖是否成立。我们证明,对于所谓的索菲-热尔曼素数,即对于 $d\ge 11$ 素数,且 $\frac {d-1}2$ 也是素数,这一点是成立的。我们使用了关于 $GL_2$ 类型无性变体的算术性质结果,并结合了 Theta 对偶技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic coverings of genus curves of Sophie Germain type
We consider cyclic unramified coverings of degree d of irreducible complex smooth genus $2$ curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order d. The rich geometry of the associated Prym map has been studied in several papers, and the cases $d=2, 3, 5, 7$ are quite well understood. Nevertheless, very little is known for higher values of d. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for $d\ge 11$ prime such that $\frac {d-1}2$ is also prime. We use results of arithmetic nature on $GL_2$ -type abelian varieties combined with theta-duality techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信