有限群对称对的乘数界值

IF 1.2 2区 数学 Q1 MATHEMATICS
Avraham Aizenbud, Nir Avni
{"title":"有限群对称对的乘数界值","authors":"Avraham Aizenbud, Nir Avni","doi":"10.1017/fms.2024.58","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline1.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite group, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline2.png\"/> <jats:tex-math> $\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an involution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline3.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline4.png\"/> <jats:tex-math> $\\rho $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an irreducible complex representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline5.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline6.png\"/> <jats:tex-math> ${\\operatorname {dim}} \\rho ^{\\Gamma ^{\\theta }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of the smallest dimension of a faithful <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline7.png\"/> <jats:tex-math> $\\mathbb {F}_p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline8.png\"/> <jats:tex-math> $\\Gamma /\\operatorname {\\mathrm {Rad}}_p(\\Gamma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>p</jats:italic> is any odd prime and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline9.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {Rad}}_p(\\Gamma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the maximal normal <jats:italic>p</jats:italic>-subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline10.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This implies, in particular, that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline11.png\"/> <jats:tex-math> $\\mathbf {G}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a group scheme over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline12.png\"/> <jats:tex-math> $\\mathbb {Z}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline13.png\"/> <jats:tex-math> $\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an involution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline14.png\"/> <jats:tex-math> $\\mathbf {G}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the multiplicity of any irreducible representation in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000586_inline15.png\"/> <jats:tex-math> $C^\\infty \\left( \\mathbf {G}(\\mathbb {Z}_p)/ \\mathbf {G} ^{\\theta }(\\mathbb {Z}_p) \\right)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is bounded, uniformly in <jats:italic>p</jats:italic>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on multiplicities of symmetric pairs of finite groups\",\"authors\":\"Avraham Aizenbud, Nir Avni\",\"doi\":\"10.1017/fms.2024.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline1.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite group, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline2.png\\\"/> <jats:tex-math> $\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an involution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline3.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline4.png\\\"/> <jats:tex-math> $\\\\rho $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an irreducible complex representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline5.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline6.png\\\"/> <jats:tex-math> ${\\\\operatorname {dim}} \\\\rho ^{\\\\Gamma ^{\\\\theta }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of the smallest dimension of a faithful <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline7.png\\\"/> <jats:tex-math> $\\\\mathbb {F}_p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline8.png\\\"/> <jats:tex-math> $\\\\Gamma /\\\\operatorname {\\\\mathrm {Rad}}_p(\\\\Gamma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>p</jats:italic> is any odd prime and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline9.png\\\"/> <jats:tex-math> $\\\\operatorname {\\\\mathrm {Rad}}_p(\\\\Gamma )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the maximal normal <jats:italic>p</jats:italic>-subgroup of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline10.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This implies, in particular, that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline11.png\\\"/> <jats:tex-math> $\\\\mathbf {G}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a group scheme over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline12.png\\\"/> <jats:tex-math> $\\\\mathbb {Z}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline13.png\\\"/> <jats:tex-math> $\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an involution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline14.png\\\"/> <jats:tex-math> $\\\\mathbf {G}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the multiplicity of any irreducible representation in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000586_inline15.png\\\"/> <jats:tex-math> $C^\\\\infty \\\\left( \\\\mathbf {G}(\\\\mathbb {Z}_p)/ \\\\mathbf {G} ^{\\\\theta }(\\\\mathbb {Z}_p) \\\\right)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is bounded, uniformly in <jats:italic>p</jats:italic>.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.58\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.58","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $\Gamma $ 是一个有限群,让 $\theta $ 是 $\Gamma $ 的一个反卷,让 $\rho $ 是 $\Gamma $ 的一个不可还原复代表。我们将 ${operatorname {dim}\的最小维度,其中 p 是任意奇素数,$operatorname {\mathrm {Rad}}_p(\Gamma )$ 是 $Gamma $ 的最大法向 p 子群。这就意味着,如果 $\mathbf {G}$ 是一个在 $\mathbb {Z}$ 上的群方案,并且 $\theta $ 是 $\mathbf {G}$ 的一个内卷,那么在 $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} 中的任何不可还原表征的多重性就是 $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G})^{\theta }(\mathbb {Z}_p) \right)$ 是有界的,在 p 中均匀分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on multiplicities of symmetric pairs of finite groups
Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $ . We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$ -representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$ , where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $ . This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$ , then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信