{"title":"轴对称不可压缩粘性等离子体:全局拟然性和渐近性","authors":"Diogo Arsénio, Zineb Hassainia, Haroune Houamed","doi":"10.1017/fms.2024.60","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline1.png\"/> <jats:tex-math> $c\\in (c_0, \\infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for some threshold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline2.png\"/> <jats:tex-math> $c_0>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline3.png\"/> <jats:tex-math> $c\\rightarrow \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting. The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline4.png\"/> <jats:tex-math> $c\\to \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> allows us to derive a robust nonlinear energy estimate which holds uniformly in <jats:italic>c</jats:italic>. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system. This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000604_inline5.png\"/> <jats:tex-math> $c\\to \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics\",\"authors\":\"Diogo Arsénio, Zineb Hassainia, Haroune Houamed\",\"doi\":\"10.1017/fms.2024.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000604_inline1.png\\\"/> <jats:tex-math> $c\\\\in (c_0, \\\\infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for some threshold <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000604_inline2.png\\\"/> <jats:tex-math> $c_0>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000604_inline3.png\\\"/> <jats:tex-math> $c\\\\rightarrow \\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting. The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000604_inline4.png\\\"/> <jats:tex-math> $c\\\\to \\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> allows us to derive a robust nonlinear energy estimate which holds uniformly in <jats:italic>c</jats:italic>. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system. This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000604_inline5.png\\\"/> <jats:tex-math> $c\\\\to \\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.60\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.60","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Axisymmetric Incompressible Viscous Plasmas: Global Well-Posedness and Asymptotics
This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equations. More precisely, we are able to prove that, for large values of the speed of light $c\in (c_0, \infty )$ , for some threshold $c_0>0$ depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime $c\rightarrow \infty $ and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting. The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting. Furthermore, a detailed analysis of the asymptotic regime $c\to \infty $ allows us to derive a robust nonlinear energy estimate which holds uniformly in c. As a byproduct of such refined uniform estimates, we are able to describe the global strong convergence of solutions toward the MHD system. This collection of results seemingly establishes the first available global well-posedness of three-dimensional viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large initial data as $c\to \infty $ .
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.