PL-Genus of surfaces in homology balls

IF 1.2 2区 数学 Q1 MATHEMATICS
Jennifer Hom, Matthew Stoffregen, Hugo Zhou
{"title":"PL-Genus of surfaces in homology balls","authors":"Jennifer Hom, Matthew Stoffregen, Hugo Zhou","doi":"10.1017/fms.2023.126","DOIUrl":null,"url":null,"abstract":"<p>We consider manifold-knot pairs <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(Y,K)$</span></span></img></span></span>, where <span>Y</span> is a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\Sigma $</span></span></img></span></span> in a homology ball <span>X</span>, such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\partial (X, \\Sigma ) = (Y, K)$</span></span></img></span></span> can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$(Y, K)$</span></span></img></span></span> to any knot in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240124084648793-0779:S2050509423001263:S2050509423001263_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$S^3$</span></span></img></span></span> can be arbitrarily large. The proof relies on Heegaard Floer homology.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.126","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider manifold-knot pairs Abstract Image$(Y,K)$, where Y is a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface Abstract Image$\Sigma $ in a homology ball X, such that Abstract Image$\partial (X, \Sigma ) = (Y, K)$ can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from Abstract Image$(Y, K)$ to any knot in Abstract Image$S^3$ can be arbitrarily large. The proof relies on Heegaard Floer homology.

PL-同调球中的曲面类
我们考虑流形-结对 $(Y,K)$,其中 Y 是一个同调 3 球,它边界是一个同调 4 球。我们证明,在同调球 X 中,一个 PL 曲面 $\Sigma $ 的最小属度,使得 $\partial (X, \Sigma ) = (Y, K)$ 可以任意大。等价地,从 $(Y, K)$ 到 $S^3$ 中任意结的同调中曲面同调的最小属值可以是任意大的。证明依赖于 Heegaard Floer homology。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信