{"title":"Almost Everywhere Behavior of Functions According to Partition Measures","authors":"William Chan, Stephen Jackson, Nam Trang","doi":"10.1017/fms.2023.130","DOIUrl":null,"url":null,"abstract":"This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>•</jats:label> If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline1.png\" /> <jats:tex-math> $\\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a cardinal, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline2.png\" /> <jats:tex-math> $\\epsilon < \\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline3.png\" /> <jats:tex-math> ${\\mathrm {cof}}(\\epsilon ) = \\omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline4.png\" /> <jats:tex-math> $\\kappa \\rightarrow _* (\\kappa )^{\\epsilon \\cdot \\epsilon }_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline5.png\" /> <jats:tex-math> $\\Phi : [\\kappa ]^\\epsilon _* \\rightarrow \\mathrm {ON}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline6.png\" /> <jats:tex-math> $\\Phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the almost everywhere short length continuity property: There is a club <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline7.png\" /> <jats:tex-math> $C \\subseteq \\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline8.png\" /> <jats:tex-math> $\\delta < \\epsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> so that for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline9.png\" /> <jats:tex-math> $f,g \\in [C]^\\epsilon _*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline10.png\" /> <jats:tex-math> $f \\upharpoonright \\delta = g \\upharpoonright \\delta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline11.png\" /> <jats:tex-math> $\\sup (f) = \\sup (g)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline12.png\" /> <jats:tex-math> $\\Phi (f) = \\Phi (g)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label>•</jats:label> If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline13.png\" /> <jats:tex-math> $\\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a cardinal, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline14.png\" /> <jats:tex-math> $\\epsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is countable, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline15.png\" /> <jats:tex-math> $\\kappa \\rightarrow _* (\\kappa )^{\\epsilon \\cdot \\epsilon }_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> holds and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline16.png\" /> <jats:tex-math> $\\Phi : [\\kappa ]^\\epsilon _* \\rightarrow \\mathrm {ON}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline17.png\" /> <jats:tex-math> $\\Phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the strong almost everywhere short length continuity property: There is a club <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline18.png\" /> <jats:tex-math> $C \\subseteq \\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and finitely many ordinals <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline19.png\" /> <jats:tex-math> $\\delta _0, ..., \\delta _k \\leq \\epsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> so that for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline20.png\" /> <jats:tex-math> $f,g \\in [C]^\\epsilon _*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, if for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline21.png\" /> <jats:tex-math> $0 \\leq i \\leq k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline22.png\" /> <jats:tex-math> $\\sup (f \\upharpoonright \\delta _i) = \\sup (g \\upharpoonright \\delta _i)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline23.png\" /> <jats:tex-math> $\\Phi (f) = \\Phi (g)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label>•</jats:label> If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline24.png\" /> <jats:tex-math> $\\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline25.png\" /> <jats:tex-math> $\\kappa \\rightarrow _* (\\kappa )^\\kappa _2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline26.png\" /> <jats:tex-math> $\\epsilon \\leq \\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline27.png\" /> <jats:tex-math> $\\Phi : [\\kappa ]^\\epsilon _* \\rightarrow \\mathrm {ON}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline28.png\" /> <jats:tex-math> $\\Phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies the almost everywhere monotonicity property: There is a club <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline29.png\" /> <jats:tex-math> $C \\subseteq \\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> so that for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline30.png\" /> <jats:tex-math> $f,g \\in [C]^\\epsilon _*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, if for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline31.png\" /> <jats:tex-math> $\\alpha < \\epsilon $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline32.png\" /> <jats:tex-math> $f(\\alpha ) \\leq g(\\alpha )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline33.png\" /> <jats:tex-math> $\\Phi (f) \\leq \\Phi (g)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label>•</jats:label> Suppose dependent choice (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline34.png\" /> <jats:tex-math> $\\mathsf {DC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>), <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline35.png\" /> <jats:tex-math> ${\\omega _1} \\rightarrow _* ({\\omega _1})^{\\omega _1}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the almost everywhere short length club uniformization principle for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline36.png\" /> <jats:tex-math> ${\\omega _1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> hold. Then every function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline37.png\" /> <jats:tex-math> $\\Phi : [{\\omega _1}]^{\\omega _1}_* \\rightarrow {\\omega _1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies a finite continuity property with respect to closure points: Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline38.png\" /> <jats:tex-math> $\\mathfrak {C}_f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the club of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline39.png\" /> <jats:tex-math> $\\alpha < {\\omega _1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> so that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline40.png\" /> <jats:tex-math> $\\sup (f \\upharpoonright \\alpha ) = \\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. There is a club <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline41.png\" /> <jats:tex-math> $C \\subseteq {\\omega _1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and finitely many functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline42.png\" /> <jats:tex-math> $\\Upsilon _0, ..., \\Upsilon _{n - 1} : [C]^{\\omega _1}_* \\rightarrow {\\omega _1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> so that for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline43.png\" /> <jats:tex-math> $f \\in [C]^{\\omega _1}_*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline44.png\" /> <jats:tex-math> $g \\in [C]^{\\omega _1}_*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline45.png\" /> <jats:tex-math> $\\mathfrak {C}_g = \\mathfrak {C}_f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline46.png\" /> <jats:tex-math> $i < n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline47.png\" /> <jats:tex-math> $\\sup (g \\upharpoonright \\Upsilon _i(f)) = \\sup (f \\upharpoonright \\Upsilon _i(f))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline48.png\" /> <jats:tex-math> $\\Phi (g) = \\Phi (f)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label>•</jats:label> Suppose <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline49.png\" /> <jats:tex-math> $\\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfies <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline50.png\" /> <jats:tex-math> $\\kappa \\rightarrow _* (\\kappa )^\\epsilon _2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline51.png\" /> <jats:tex-math> $\\epsilon < \\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline52.png\" /> <jats:tex-math> $\\chi < \\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline53.png\" /> <jats:tex-math> $[\\kappa ]^{<\\kappa }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> does not inject into <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline54.png\" /> <jats:tex-math> ${}^\\chi \\mathrm {ON}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline55.png\" /> <jats:tex-math> $\\chi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-length sequences of ordinals, and therefore, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline56.png\" /> <jats:tex-math> $|[\\kappa ]^\\chi | < |[\\kappa ]^{<\\kappa }|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a consequence, under the axiom of determinacy <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline57.png\" /> <jats:tex-math> $(\\mathsf {AD})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, these two cardinality results hold when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline58.png\" /> <jats:tex-math> $\\kappa $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is one of the following weak or strong partition cardinals of determinacy: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline59.png\" /> <jats:tex-math> ${\\omega _1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline60.png\" /> <jats:tex-math> $\\omega _2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline61.png\" /> <jats:tex-math> $\\boldsymbol {\\delta }_n^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline62.png\" /> <jats:tex-math> $1 \\leq n < \\omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline63.png\" /> <jats:tex-math> $\\boldsymbol {\\delta }^2_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (assuming in addition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001305_inline64.png\" /> <jats:tex-math> $\\mathsf {DC}_{\\mathbb {R}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>). </jats:list-item> </jats:list>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":"28 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.130","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses. • If $\kappa $ is a cardinal, $\epsilon < \kappa $ , ${\mathrm {cof}}(\epsilon ) = \omega $ , $\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$ and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$ , then $\Phi $ satisfies the almost everywhere short length continuity property: There is a club $C \subseteq \kappa $ and a $\delta < \epsilon $ so that for all $f,g \in [C]^\epsilon _*$ , if $f \upharpoonright \delta = g \upharpoonright \delta $ and $\sup (f) = \sup (g)$ , then $\Phi (f) = \Phi (g)$ . • If $\kappa $ is a cardinal, $\epsilon $ is countable, $\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$ holds and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$ , then $\Phi $ satisfies the strong almost everywhere short length continuity property: There is a club $C \subseteq \kappa $ and finitely many ordinals $\delta _0, ..., \delta _k \leq \epsilon $ so that for all $f,g \in [C]^\epsilon _*$ , if for all $0 \leq i \leq k$ , $\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$ , then $\Phi (f) = \Phi (g)$ . • If $\kappa $ satisfies $\kappa \rightarrow _* (\kappa )^\kappa _2$ , $\epsilon \leq \kappa $ and $\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$ , then $\Phi $ satisfies the almost everywhere monotonicity property: There is a club $C \subseteq \kappa $ so that for all $f,g \in [C]^\epsilon _*$ , if for all $\alpha < \epsilon $ , $f(\alpha ) \leq g(\alpha )$ , then $\Phi (f) \leq \Phi (g)$ . • Suppose dependent choice ( $\mathsf {DC}$ ), ${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$ and the almost everywhere short length club uniformization principle for ${\omega _1}$ hold. Then every function $\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$ satisfies a finite continuity property with respect to closure points: Let $\mathfrak {C}_f$ be the club of $\alpha < {\omega _1}$ so that $\sup (f \upharpoonright \alpha ) = \alpha $ . There is a club $C \subseteq {\omega _1}$ and finitely many functions $\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$ so that for all $f \in [C]^{\omega _1}_*$ , for all $g \in [C]^{\omega _1}_*$ , if $\mathfrak {C}_g = \mathfrak {C}_f$ and for all $i < n$ , $\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$ , then $\Phi (g) = \Phi (f)$ . • Suppose $\kappa $ satisfies $\kappa \rightarrow _* (\kappa )^\epsilon _2$ for all $\epsilon < \kappa $ . For all $\chi < \kappa $ , $[\kappa ]^{<\kappa }$ does not inject into ${}^\chi \mathrm {ON}$ , the class of $\chi $ -length sequences of ordinals, and therefore, $|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$ . As a consequence, under the axiom of determinacy $(\mathsf {AD})$ , these two cardinality results hold when $\kappa $ is one of the following weak or strong partition cardinals of determinacy: ${\omega _1}$ , $\omega _2$ , $\boldsymbol {\delta }_n^1$ (for all $1 \leq n < \omega $ ) and $\boldsymbol {\delta }^2_1$ (assuming in addition $\mathsf {DC}_{\mathbb {R}}$ ).
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.