{"title":"普遍拜尔集合的通用绝对性的精确一致性强度","authors":"Grigor Sargsyan, Nam Trang","doi":"10.1017/fms.2023.127","DOIUrl":null,"url":null,"abstract":"A set of reals is <jats:italic>universally Baire</jats:italic> if all of its continuous preimages in topological spaces have the Baire property. <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline1.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline2.png\" /> <jats:tex-math> $\\mathsf {Largest\\ Suslin\\ Axiom}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline3.png\" /> <jats:tex-math> $\\mathsf {LSA}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline4.png\" /> <jats:tex-math> $\\mathsf {LSA-over-uB}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the statement that in all (set) generic extensions there is a model of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline5.png\" /> <jats:tex-math> $\\mathsf {LSA}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose Suslin, co-Suslin sets are the universally Baire sets. We show that over some mild large cardinal theory, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline6.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is equiconsistent with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline7.png\" /> <jats:tex-math> $\\mathsf {LSA-over-uB}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we obtain that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline8.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is weaker than the theory ‘<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline9.png\" /> <jats:tex-math> $\\mathsf {ZFC} +$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there is a Woodin cardinal which is a limit of Woodin cardinals’. A variation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline10.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, called <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline11.png\" /> <jats:tex-math> $\\mathsf {Tower\\ Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, is also shown to be equiconsistent with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline12.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over the same large cardinal theory. The result is proven via Woodin’s <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline13.png\" /> <jats:tex-math> $\\mathsf {Core\\ Model\\ Induction}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> technique and is essentially the ultimate equiconsistency that can be proven via the current interpretation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline14.png\" /> <jats:tex-math> $\\mathsf {CMI}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as explained in the paper.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exact consistency strength of the generic absoluteness for the universally Baire sets\",\"authors\":\"Grigor Sargsyan, Nam Trang\",\"doi\":\"10.1017/fms.2023.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of reals is <jats:italic>universally Baire</jats:italic> if all of its continuous preimages in topological spaces have the Baire property. <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline1.png\\\" /> <jats:tex-math> $\\\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline2.png\\\" /> <jats:tex-math> $\\\\mathsf {Largest\\\\ Suslin\\\\ Axiom}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline3.png\\\" /> <jats:tex-math> $\\\\mathsf {LSA}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline4.png\\\" /> <jats:tex-math> $\\\\mathsf {LSA-over-uB}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the statement that in all (set) generic extensions there is a model of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline5.png\\\" /> <jats:tex-math> $\\\\mathsf {LSA}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose Suslin, co-Suslin sets are the universally Baire sets. We show that over some mild large cardinal theory, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline6.png\\\" /> <jats:tex-math> $\\\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is equiconsistent with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline7.png\\\" /> <jats:tex-math> $\\\\mathsf {LSA-over-uB}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we obtain that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline8.png\\\" /> <jats:tex-math> $\\\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is weaker than the theory ‘<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline9.png\\\" /> <jats:tex-math> $\\\\mathsf {ZFC} +$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there is a Woodin cardinal which is a limit of Woodin cardinals’. A variation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline10.png\\\" /> <jats:tex-math> $\\\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, called <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline11.png\\\" /> <jats:tex-math> $\\\\mathsf {Tower\\\\ Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, is also shown to be equiconsistent with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline12.png\\\" /> <jats:tex-math> $\\\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over the same large cardinal theory. The result is proven via Woodin’s <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline13.png\\\" /> <jats:tex-math> $\\\\mathsf {Core\\\\ Model\\\\ Induction}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> technique and is essentially the ultimate equiconsistency that can be proven via the current interpretation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001275_inline14.png\\\" /> <jats:tex-math> $\\\\mathsf {CMI}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as explained in the paper.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.127\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.127","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The exact consistency strength of the generic absoluteness for the universally Baire sets
A set of reals is universally Baire if all of its continuous preimages in topological spaces have the Baire property. $\mathsf {Sealing}$ is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing. The $\mathsf {Largest\ Suslin\ Axiom}$ ( $\mathsf {LSA}$ ) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let $\mathsf {LSA-over-uB}$ be the statement that in all (set) generic extensions there is a model of $\mathsf {LSA}$ whose Suslin, co-Suslin sets are the universally Baire sets. We show that over some mild large cardinal theory, $\mathsf {Sealing}$ is equiconsistent with $\mathsf {LSA-over-uB}$ . In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we obtain that $\mathsf {Sealing}$ is weaker than the theory ‘ $\mathsf {ZFC} +$ there is a Woodin cardinal which is a limit of Woodin cardinals’. A variation of $\mathsf {Sealing}$ , called $\mathsf {Tower\ Sealing}$ , is also shown to be equiconsistent with $\mathsf {Sealing}$ over the same large cardinal theory. The result is proven via Woodin’s $\mathsf {Core\ Model\ Induction}$ technique and is essentially the ultimate equiconsistency that can be proven via the current interpretation of $\mathsf {CMI}$ as explained in the paper.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.