The exact consistency strength of the generic absoluteness for the universally Baire sets

IF 1.2 2区 数学 Q1 MATHEMATICS
Grigor Sargsyan, Nam Trang
{"title":"The exact consistency strength of the generic absoluteness for the universally Baire sets","authors":"Grigor Sargsyan, Nam Trang","doi":"10.1017/fms.2023.127","DOIUrl":null,"url":null,"abstract":"A set of reals is <jats:italic>universally Baire</jats:italic> if all of its continuous preimages in topological spaces have the Baire property. <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline1.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline2.png\" /> <jats:tex-math> $\\mathsf {Largest\\ Suslin\\ Axiom}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline3.png\" /> <jats:tex-math> $\\mathsf {LSA}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline4.png\" /> <jats:tex-math> $\\mathsf {LSA-over-uB}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the statement that in all (set) generic extensions there is a model of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline5.png\" /> <jats:tex-math> $\\mathsf {LSA}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose Suslin, co-Suslin sets are the universally Baire sets. We show that over some mild large cardinal theory, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline6.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is equiconsistent with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline7.png\" /> <jats:tex-math> $\\mathsf {LSA-over-uB}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we obtain that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline8.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is weaker than the theory ‘<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline9.png\" /> <jats:tex-math> $\\mathsf {ZFC} +$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there is a Woodin cardinal which is a limit of Woodin cardinals’. A variation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline10.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, called <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline11.png\" /> <jats:tex-math> $\\mathsf {Tower\\ Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, is also shown to be equiconsistent with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline12.png\" /> <jats:tex-math> $\\mathsf {Sealing}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over the same large cardinal theory. The result is proven via Woodin’s <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline13.png\" /> <jats:tex-math> $\\mathsf {Core\\ Model\\ Induction}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> technique and is essentially the ultimate equiconsistency that can be proven via the current interpretation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001275_inline14.png\" /> <jats:tex-math> $\\mathsf {CMI}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as explained in the paper.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.127","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A set of reals is universally Baire if all of its continuous preimages in topological spaces have the Baire property. $\mathsf {Sealing}$ is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by forcing. The $\mathsf {Largest\ Suslin\ Axiom}$ ( $\mathsf {LSA}$ ) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable bijections. Let $\mathsf {LSA-over-uB}$ be the statement that in all (set) generic extensions there is a model of $\mathsf {LSA}$ whose Suslin, co-Suslin sets are the universally Baire sets. We show that over some mild large cardinal theory, $\mathsf {Sealing}$ is equiconsistent with $\mathsf {LSA-over-uB}$ . In fact, we isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we obtain that $\mathsf {Sealing}$ is weaker than the theory ‘ $\mathsf {ZFC} +$ there is a Woodin cardinal which is a limit of Woodin cardinals’. A variation of $\mathsf {Sealing}$ , called $\mathsf {Tower\ Sealing}$ , is also shown to be equiconsistent with $\mathsf {Sealing}$ over the same large cardinal theory. The result is proven via Woodin’s $\mathsf {Core\ Model\ Induction}$ technique and is essentially the ultimate equiconsistency that can be proven via the current interpretation of $\mathsf {CMI}$ as explained in the paper.
普遍拜尔集合的通用绝对性的精确一致性强度
如果一个实数集在拓扑空间中的所有连续预映像都具有贝叶性质,那么这个实数集就是普遍贝叶集。 $mathsf{Sealing}$是伍丁提出的一种通用绝对性条件,它以强有力的措辞断言普遍百里集的理论不能被强制改变。$mathsf {Largest\ Suslin\ Axiom}$ ($\mathsf {LSA}$)是伍丁分离出来的一个确定性公理。它断言最大的苏斯林红心对于序数可定义的双射来说是不可及的。让 $\mathsf {LSA-over-uB}$ 声明在所有(集合)泛函扩展中都有一个 $\mathsf {LSA}$ 的模型,其苏斯林集、共苏斯林集都是普遍拜尔集。我们证明,在某些温和的大心算理论中,$\mathsf {Sealing}$与$\mathsf {LSA-over-uB}$是等价的。事实上,我们分离出一个精确的大心算理论,它与这两个理论是等价的(见定义 2.7)。因此,我们得到 $\mathsf {Sealing}$ 比理论 ' $\mathsf {ZFC}$ 弱。+$ 有一个伍丁红心是伍丁红心的极限'。$mathsf {Sealing}$的一个变种,叫做$mathsf {Tower\ Sealing}$,也被证明在相同的大贲门理论上与$mathsf {Sealing}$是等价的。这个结果是通过伍丁的 $\mathsf {Core\ Model\ Induction}$ 技术证明的,本质上是通过本文所解释的 $\mathsf {CMI}$ 的当前解释所能证明的终极等价一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信