Lie algebra actions on module categories for truncated shifted yangians

IF 1.2 2区 数学 Q1 MATHEMATICS
Joel Kamnitzer, Ben Webster, Alex Weekes, Oded Yacobi
{"title":"Lie algebra actions on module categories for truncated shifted yangians","authors":"Joel Kamnitzer, Ben Webster, Alex Weekes, Oded Yacobi","doi":"10.1017/fms.2024.3","DOIUrl":null,"url":null,"abstract":"<p>We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.</p><p>After this general definition, we focus on quiver gauge theories attached to a quiver <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma $</span></span></img></span></span>. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {g}_{\\Gamma }$</span></span></img></span></span> on category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathcal {O}$</span></span></img></span></span> for these Coulomb branch algebras. When <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$ \\Gamma $</span></span></img></span></span> is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.</p><p>To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.

After this general definition, we focus on quiver gauge theories attached to a quiver Abstract Image$\Gamma $. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra Abstract Image$\mathfrak {g}_{\Gamma }$ on category Abstract Image$ \mathcal {O}$ for these Coulomb branch algebras. When Abstract Image$ \Gamma $ is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.

To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.

截断移位扬基的模类上的李代数作用
在布拉维曼-芬克尔伯格-中岛(Braverman-Finkelberg-Nakajima)的意义上,我们发展了库仑支代数上相关模块的抛物线归纳和限制函数理论。我们的函数概括了贝兹鲁卡夫尼科夫-艾廷戈夫(Bezrukavnikov-Etingof)的切雷德尼克(Cherednik)代数的归纳和限制函数,但他们的定义使用了不同的工具。通过归纳和限制函数,我们可以为这些库仑支代数定义相应的对称卡-莫迪代数 $\mathfrak {g}_{\Gamma }$ 在类别 $\mathcal {O}$ 上的分类作用。当 $\Gamma $ 是戴恩金类型时,库仑支代数是截断的移位扬基,并量化了广义仿射格拉斯曼切片。为了建立这种分类作用,我们定义了一类新的 "有味道的 "KLRW代数,它们类似于第二位作者最初为张量乘分类而构建的图解代数。我们证明了库仑分支代数上的格尔芬-策林模块范畴与有味 KLRW 代数上的模块范畴之间的等价性。这个等价关系将归纳和限制函数的分类作用与 KLRW 代数上模块的通常分类作用联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信