Δ-斯普林格变种和霍尔-利特尔伍德多项式

IF 1.2 2区 数学 Q1 MATHEMATICS
Sean T. Griffin
{"title":"Δ-斯普林格变种和霍尔-利特尔伍德多项式","authors":"Sean T. Griffin","doi":"10.1017/fms.2024.1","DOIUrl":null,"url":null,"abstract":"<p>The <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta $</span></span></img></span></span>-Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author that have connections to the Delta Conjecture from algebraic combinatorics. We prove a positive Hall–Littlewood expansion formula for the graded Frobenius characteristic of the cohomology ring of a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta $</span></span></img></span></span>-Springer variety. We do this by interpreting the Frobenius characteristic in terms of counting points over a finite field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {F}_q$</span></span></img></span></span> and partitioning the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\Delta $</span></span></img></span></span>-Springer variety into copies of Springer fibers crossed with affine spaces. As a special case, our proof method gives a geometric meaning to a formula of Haglund, Rhoades and Shimozono for the Hall–Littlewood expansion of the symmetric function in the Delta Conjecture at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$t=0$</span></span></img></span></span>.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Δ–Springer varieties and Hall–Littlewood polynomials\",\"authors\":\"Sean T. Griffin\",\"doi\":\"10.1017/fms.2024.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Delta $</span></span></img></span></span>-Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author that have connections to the Delta Conjecture from algebraic combinatorics. We prove a positive Hall–Littlewood expansion formula for the graded Frobenius characteristic of the cohomology ring of a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Delta $</span></span></img></span></span>-Springer variety. We do this by interpreting the Frobenius characteristic in terms of counting points over a finite field <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {F}_q$</span></span></img></span></span> and partitioning the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Delta $</span></span></img></span></span>-Springer variety into copies of Springer fibers crossed with affine spaces. As a special case, our proof method gives a geometric meaning to a formula of Haglund, Rhoades and Shimozono for the Hall–Littlewood expansion of the symmetric function in the Delta Conjecture at <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130123256385-0889:S205050942400001X:S205050942400001X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t=0$</span></span></img></span></span>.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

$\Delta $-Springer 变体是莱文森(Levinson)、吴(Woo)和作者提出的斯普林格纤维的广义化,与代数组合学中的德尔塔猜想有关。我们证明了 $\Delta $-Springer 变的同调环的分级弗罗贝尼斯特征的正霍尔-利特尔伍德展开式。为此,我们用有限域 $\mathbb {F}_q$ 上的计数点来解释弗罗贝尼斯特征,并将 $\Delta $-Springer 变化划分为与仿射空间交叉的 Springer 纤维的副本。作为一个特例,我们的证明方法赋予了哈格伦德、罗兹和下之野关于德尔塔猜想中对称函数在 $t=0$ 时的霍尔-利特尔伍德展开的公式以几何意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Δ–Springer varieties and Hall–Littlewood polynomials

The $\Delta $-Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author that have connections to the Delta Conjecture from algebraic combinatorics. We prove a positive Hall–Littlewood expansion formula for the graded Frobenius characteristic of the cohomology ring of a $\Delta $-Springer variety. We do this by interpreting the Frobenius characteristic in terms of counting points over a finite field $\mathbb {F}_q$ and partitioning the $\Delta $-Springer variety into copies of Springer fibers crossed with affine spaces. As a special case, our proof method gives a geometric meaning to a formula of Haglund, Rhoades and Shimozono for the Hall–Littlewood expansion of the symmetric function in the Delta Conjecture at $t=0$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信