Joel Kamnitzer, Ben Webster, Alex Weekes, Oded Yacobi
{"title":"截断移位扬基的模类上的李代数作用","authors":"Joel Kamnitzer, Ben Webster, Alex Weekes, Oded Yacobi","doi":"10.1017/fms.2024.3","DOIUrl":null,"url":null,"abstract":"<p>We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.</p><p>After this general definition, we focus on quiver gauge theories attached to a quiver <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma $</span></span></img></span></span>. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {g}_{\\Gamma }$</span></span></img></span></span> on category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathcal {O}$</span></span></img></span></span> for these Coulomb branch algebras. When <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$ \\Gamma $</span></span></img></span></span> is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.</p><p>To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie algebra actions on module categories for truncated shifted yangians\",\"authors\":\"Joel Kamnitzer, Ben Webster, Alex Weekes, Oded Yacobi\",\"doi\":\"10.1017/fms.2024.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.</p><p>After this general definition, we focus on quiver gauge theories attached to a quiver <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Gamma $</span></span></img></span></span>. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathfrak {g}_{\\\\Gamma }$</span></span></img></span></span> on category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ \\\\mathcal {O}$</span></span></img></span></span> for these Coulomb branch algebras. When <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130131013942-0166:S2050509424000033:S2050509424000033_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ \\\\Gamma $</span></span></img></span></span> is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.</p><p>To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lie algebra actions on module categories for truncated shifted yangians
We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.
After this general definition, we focus on quiver gauge theories attached to a quiver $\Gamma $. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra $\mathfrak {g}_{\Gamma }$ on category $ \mathcal {O}$ for these Coulomb branch algebras. When $ \Gamma $ is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.
To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.